首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Describes a new dynamic CMOS technique which is fully racefree, yet has high logic flexibility. The circuits operate racefree from two clocks /spl phi/ and /spl phi/~ regardless of their overlap time. In contrast to the critical clock skew specification in the conventional CMOS pipelined circuits, the proposed technique imposes no restriction to the amount of clock skew. The main building blocks of the NORA technique are dynamic CMOS and C/SUP 2/MOS logic functions. Static CMOS functions can also be employed. Logic composition rules to mix dynamic CMOS, C/SUP 2/MOS, and conventional CMOS will be presented. Different from Domino technique, logic inversion is also provided. This means higher logic flexibility and less transistors for the same function. The effects of charge redistribution, noise margin, and leakage in the dynamic CMOS blocks are also analyzed. Experimental results show the feasibility of the principles discussed.  相似文献   

2.
We present a dual transition preferentially sized (DTPS) logic that uses two separate paths - one for the fast propagation of low-to-high signal and the other for fast propagation of high-to-low signal. DTPS logic is suitable for multistage buffers and critical sections of datapaths requiring good noise immunity and low power dissipation while achieving high performance. We derived formulas to obtain optimal tapering factors of multistage buffers based on preferentially sized (PS) inverters, and implemented DTPS logic using the optimal tapering factors. We fabricated datapaths based on static CMOS logic, domino logic, and DTPS logic in 0.18-/spl mu/m technology. DTPS logic shows 15% and 16% improvements in performance and power dissipation, respectively, over domino, and 42% improvement in performance compared to static CMOS.  相似文献   

3.
Design of noise detector circuits as compact as standard logic cells is proposed. High-density large-scale digital integrated circuits that embed such built-in noise detectors enable in-depth characterization of dynamic power supply and ground noises. Dependence of power supply and ground voltage drops on the location of active cell rows within 1.8-V standard cell-based digital circuits are consistently measured by 1.8- and 2.5-V built-in detectors fabricated in a 0.18-/spl mu/m CMOS triple-well technology. Measurements also show that ground noise distribution is distinctively more localized than power supply counterparts due to the presence of a substrate.  相似文献   

4.
The development is discussed for a 13-ns, 500-mW, 16K word/spl times/4-bit emitter-coupled logic (ECL) RAM using high-performance bipolar CMOS (Hi-BiCMOS) technology that combines a bipolar and a CMOS device on the same chip. The power dissipation of the RAM is about one half that of the conventional 64-kb bipolar ECL RAM. This high-speed, low-power RAM has been realized through a concept of a MOS-type memory cell, bipolar circuits, and a CMOS combination gate to allow for increased LSI integration.  相似文献   

5.
A 16 Mb embedded DRAM macro in a fully CMOS logic compatible 90 nm process with a low noise core architecture and a high-accuracy post-fabrication tuning scheme has been developed. Based on the proposed techniques, 61% improvement of the sensing accuracy is realized. Even with the smallest 5 fF/cell capacitance, a 322 MHz random-cycle access while 32 ms data retention time which contributes to save the data retention power down to 60 /spl mu/W are achieved.  相似文献   

6.
This work presents CMOS bulk input differential logic (BIDL) circuits. The bulk input scheme is applied to enable bulk terminals to receive signals. A boost circuit is employed to the bulk terminal of an input device. A multiple-input boost circuit is also developed to improve the flexibility of logic design. A current latch sense amplifier is used to generate a pair of full-swing output signals without dc power dissipation. The devices in the differential logic network are connected in parallel, leading to a low parasitic resistive and capacitive load. The BIDL has better speed and power performance than conventional differential logic circuits. The flexibility of the logic design is greatly improved. The BIDL is applied to a divide-by-128/129 frequency synthesizer using a 0.25-/spl mu/m CMOS process. Measurement results of the test chip indicate that the operating frequency is 2 GHz at a supply voltage of 2.5 V.  相似文献   

7.
Domino CMOS circuits are an option for speeding up critical units. An inherent problem of Domino logic is that under specific input conditions the charge redistribution between parasitic capacitances at internal nodes of a circuit can violate the noise margins and cause erroneous responses at the output. The dominant solution to this problem is the multiple precharging of the gate's internal nodes. However, the added precharge transistors are not testable for stuck-open faults. Undetectable stuck-open faults at these transistors may cause noise margins reduction and consequently may affect the reliability of the circuit since its operation in the field will be sensitive to environmental factors such as noise. In this paper, we propose new multiple precharging design schemes that enhance Domino circuits' testability with respect to transistor stuck-open and stuck-on faults  相似文献   

8.
The application of domino logic to standard-cell-based design is discussed. Domino cells are compatible with static cells and can be used to achieve lower power consumption, as well as a reduction in area or an improvement in system speed. In order to optimise the delay/area performance of domino cells, an analytical model is presented and its validity verified by measurements on test cells implemented in both 5- and 3-/spl mu/m CMOS processes.  相似文献   

9.
多端I/O系统用BiCMOS连线逻辑电路   总被引:7,自引:1,他引:6  
为了满足数字通信和信息处理系统多端输入/输出(I/O)、高速、低耗的性能要求,笔者设计了几例BiCMOS连线逻辑电路,并提出了采用0.5 mm BiCMOS工艺,制备所设计的连线逻辑电路的技术要点和元器件参数。所做实验表明了设计的连线逻辑电路既具有双极型逻辑门电路快速、大电流驱动能力的特点,又具备CMOS逻辑门低压、低功耗的长处,而且其扇入数可达3~16,扇出数可达1~18,因而它们特别适用于多端I/O高速数字通信和信息处理系统中。  相似文献   

10.
We have developed a complete single-chip GPS receiver using 0.18-/spl mu/m CMOS to meet several important requirements, such as small size, low power, low cost, and high sensitivity for mobile GPS applications. This is the first case in which a radio has been successfully combined with a baseband processor, such as SoC, in a GPS receiver. The GPS chip, with a total size of 6.3 mm /spl times/ 6.3 mm, contains a 2.3 mm /spl times/ 2.0 mm radio part, including RF front end, phase-locked loops, IF functions, and 500 K gates of baseband logic, including mask ROM, SRAM, and dual port SRAM . It is fabricated using 0.18-/spl mu/m CMOS technology with a MIM capacitor and operates from a 1.6-2.0-V power supply. Experimental results show a very low power consumption of, typically, 57 mW for a fully functional chip including baseband, and a high sensitivity of -152dBm. Through countermeasures against substrate coupling noise from the digital part, the high sensitivity was successfully achieved without any external low-noise amplifier.  相似文献   

11.
A pixel structure for still CMOS imager application called the pseudoactive pixel sensor (PAPS) is proposed and analyzed in this paper. It has the advantages of a low dark current, high signal-to-noise ratio, and a high fill factor over the conventional passive pixel sensor imager or active pixel sensor imager. The readout circuit called the zero-bias column buffer-direct-injection structure is also proposed to suppress both the dark current of the photodiode and the leakage current of row switches by keeping both biases of photodiode and the parasitic p-n junction in the column bus at or near zero voltage. The improved double delta sampling circuits are also used to suppress fixed pattern noise, clock feedthrough noise, and channel charge injection. An experimental chip of the proposed PAPS CMOS imager with the format of 352/spl times/288 (CIF) has been fabricated by using a 0.25-/spl mu/m single-poly-five-level-metal (1P5M) n-well CMOS process. The pixel size is 5.8 /spl mu/m/spl times/5.8 /spl mu/m. The pixel readout speed is from 100 kHz to 10 MHz, corresponding to the maximum frame rate above 30 frames/s. The proposed still CMOS imager has a fill factor of 58%, chip size of 3660 /spl mu/m/spl times/3500 /spl mu/m, and power dissipation of 24 mW under the power supply of 3.3 V. The experimental chip has successfully demonstrated the function of the proposed new PAPS structure. It can be applied in the design of large-array-size still CMOS imager systems with a low dark current and high resolution.  相似文献   

12.
Clock Controlled Dual keeper Domino logic structures (CCDD_1 and CCDD_2) for achieving a high‐speed performance with low power consumption and a good noise margin are proposed in this paper. The keeper control circuit comprises an additional PMOS keeper transistor controlled by the clock and foot node voltage. This control mechanism offers abrupt conditional control of the keeper circuit and reduces the contention current, leading to high‐speed performance. The keeper transistor arrangement also reduces the loop gain associated with the feedback circuitry. Hence, the circuits offer less delay variability. The design and simulation of various wide fan‐in designs using 180 nm CMOS technology validates the proposed CCDD_1 and CCDD_2 designs, offering an increased speed performance of 7.2% and 8.5%, respectively, over a conventional domino logic structure. The noise gain margin analysis proves good robustness of the CCDD structures when compared with a conventional domino logic circuit configuration. A Monte Carlo simulation for 2,000 runs under statistical process variations demonstrates that the proposed CCDD circuits offer a significantly reduced delay variability factor.  相似文献   

13.
Multithreshold-voltage CMOS (MTCMOS) technology has a great advantage in that it provides high-speed operation with low supply voltages of less than 1 V. A logic gate with low-V/sub th/ MOSFETs has a high operating speed, while a low-leakage power switch with a high-V/sub th/ MOSFET eliminates the off-leakage current during sleep time. By using MTCMOS circuits and silicon-on-insulator (SOI) devices, the authors have developed a 256-kb SRAM for solar-power-operated digital equipment. A double-threshold-voltage MOSFET (DTMOS) is adopted for the power switch to further reduce the off leakage. As regards the SRAM core design, we consider a hybrid configuration consisting of high-V/sub th/ and low-V/sub th/ MOSFETs (that is, multi-V/sub th/ CMOS). A new memory cell with a separate read-data path provides a larger readout current without degrading the static noise margin. A negatively overdriven bitline scheme guarantees sure write operation at ultralow supply voltages close to 0.5 V. In addition, a charge-transfer amplifier integrated with a selector and data latches for intrabus circuitry are installed to enhance the operating speed and/or reduce power dissipation. A 32K-word /spl times/ 8-bit SRAM chip, fabricated with the 0.35-/spl mu/m multi-V/sub th/ CMOS/SOI process, has successfully operated at 25 MHz under typical conditions with 0.5-V (SRAM core) and 1-V (I/O buffers) power supplies. The power dissipation during sleep time is less than 0.4 /spl mu/W and that for 25-MHz operation is 1 mW, excluding that of the I/O buffers.  相似文献   

14.
A 2.4-GHz sub-mW CMOS receiver front-end for wireless sensors network   总被引:1,自引:0,他引:1  
A 2.4-GHz fully integrated CMOS receiver front-end using current-reused folded-cascode circuit scheme is presented. A configuration utilizing vertically stacked low-noise amplifier (LNA) and a folded-cascode mixer is proposed to improve both conversion gain and noise figure suitable for sub-mW receiver circuits. The proposed front-end achieves a conversion gain of 31.5dB and a noise figure of 11.8dB at 10MHz with 500-/spl mu/A bias current from a 1.0-V power supply. The conversion gain and noise figure improvements of the proposed front-end over a conventional merged LNA and single-balanced mixer are 11dB and 7.2dB at 10MHz, respectively, with the same power consumption of 500/spl mu/W.  相似文献   

15.
This paper describes substrate noise reduction techniques for synchronous CMOS circuits. Low-noise digital design techniques have been implemented and measured on a mixed-signal chip, fabricated in a 0.35 /spl mu/m CMOS process on an EPI-type substrate with 10 /spl Omega/cm EPI resistivity and 4 /spl mu/m EPI layer thickness. The test chip contains one reference design and two digital low-noise designs with the same basic architecture. Measurements show more than a factor of 2 on average in r.m.s. noise reduction with penalties of 3% in area and 4% in power for the low-noise design employing a supply-current waveform-shaping technique based on a clock tree with latencies. The second low-noise design employing separate substrate bias for both n- and p-wells, dual-supply, and on-chip decoupling achieves more than a factor of 2 reduction in r.m.s. noise, with, however, a 70% increase in area, but with a 5% decrease in power consumption.  相似文献   

16.
Operation of an MOS transistor as a lateral bipolar is described and analyzed qualitatively. It yields a good bipolar transistor that is fully compatible with any bulk CMOS technology. Experimental results show that high /spl beta/-gain can be achieved and that matching and 1/f noise properties are much better than in MOS operation. Examples of experimental circuits in CMOS technology illustrate the major advantages that this device offers. A multiple current mirror achieves higher accuracy, especially at low currents. An operational transconductance amplifier has an equivalent input noise density below 0.1 /spl mu/V//spl radic/Hz for frequencies as low as 1 Hz and a total current of 10 /spl mu/A. A bandgap reference yields a voltage stable within 3 mV from -40 to +80/spl deg/C after digital adjustment at ambient temperature. Other possible applications are suggested.  相似文献   

17.
This paper presents a low voltage differential current switch logic (LVDCSL) gate capable of achieving high performance for large fan-in gates. High fan-in is enabled by using a large height predischarged N-channel metal-oxide-semiconductor (NMOS) trees. The power penalty of an increased number of internal nodes in the gate is mitigated by restricting their voltage swings. The salient features of this low-voltage DCSL family are high speed for high fan-in large stack height NMOS trees, low power due to restricted internal voltage swings, simple interface to static complementary metal-oxide-semiconductor (CMOS), and a latching nature which locks out inputs once outputs are evaluated. Results show that LVDCSL is capable of working at under 2 V in a 0.35% CMOS process while being faster than comparable Domino gates. At the same time total power consumption is reduced. LVDCSL achieves 40% delay improvement and 22% power reduction in comparison with dual rail Domino gates for 8 bit carry look-ahead circuits. Results for the critical path of an adder reveal that the complexity afforded by the gate, effectively decreases the number of logic levels and leads to improved performance  相似文献   

18.
An accurate CMOS current source for current-mode low-voltage differential transmitter drivers has been designed and fabricated. It is composed of binary weighted current mirrors with built-in self-calibration circuits. The proposed self-measurement and calibration circuits can calibrate upon the collective effects of different error contributors due to process, power supply, and temperature variations. The design has been fabricated in standard 0.35-/spl mu/m CMOS technology. Measurement results show that the differential output voltage can be self-calibrated to /spl plusmn/1% accuracy with 16% reference current variation, 60% power supply variation, or 13% load resistance variation, respectively.  相似文献   

19.
Novel gate-diffusion input (GDI) circuits are applied to asynchronous design. A variety of GDI implementations are compared with typical CMOS asynchronous circuits. Dynamic GDI state holding elements are 2/spl times/ smaller than CMOS C-elements, 30% faster, and consume 85% less power, but certain CMOS elements are preferred when static storage is called for. A GDI bundled controller outperforms CMOS on all accounts, having 1/3 the delay and requiring less than half the area while consuming the same power. A combination CMOS-GDI circuit provides the optimal solution for qDI combinational logic, saving 1/3 the power, half the area, and 10% in delay relative to a CMOS implementation. GDI circuits also provide some measure of enhanced hazard tolerance.  相似文献   

20.
A fully asynchronous 8K word/spl times/8 bit CMOS static RAM with high resistive load cells is described. For fabricating the RAM, an advanced double polysilicon 2 /spl mu/m CMOS technology has been developed. Internally clocked dynamic peripheral circuits with address transition detectors are implemented to achieve high speed and low power simultaneously. A new CMOS fault-tolerant circuit technology is also introduced for improving fabrication yield without sacrificing operating speed or standby power. The resulting cell size and die size are 15/spl times/19 /spl mu/m and 4.87/spl times/7.22 mm, respectively. The RAM offers, typically, 70 ns access time, 15 mW operating power, and 10 /spl mu/W standby power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号