首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study we examined the distribution and developmental profile of the src homology 2 (SH2) domain-containing protein tyrosine phosphatase SHP-2 in the mouse brain. We found that SHP-2 is present in both mitotically active and postmitotic cells in the forebrains of embryonic day 12 (E12) mice. In a developmental study extending from embryonic day 12 to adulthood, Western blotting analysis demonstrated equivalent levels of SHP-2 protein at all of the ages examined. Expression of SHP-2 paralleled the level of enzymatic activity at the different developmental periods. In the adult brain SHP-2 was restricted to diverse classes of neurons, while the majority of glial cells did not express detectable levels of protein. However, reactive astrocytes in response to an ischemic brain injury showed SHP-2 immunolabelling. Our data suggest that SHP-2 may play a role in pathways of neuronal and glial progenitor cells, in a broad spectrum of neuronal responses in the adult brain and in the gliotic response to the injury.  相似文献   

3.
SHP-1 is an SH2-containing cytoplasmic tyrosine phosphatase that is widely distributed in cells of the hematopoietic system. SHP-1 plays an important role in the signal transduction of many cytokine receptors, including the receptor for erythropoietin, by associating via its SH2 domains to the receptors and dephosphorylating key substrates. Recent studies have suggested that SHP-1 regulates the function of Jak family tyrosine kinases, as shown by its constitutive association with the Tyk2 kinase and the hyperphosphorylation of Jak kinases in the motheaten cells that lack functional SHP-1. We have examined the interactions of SHP-1 with two tyrosine kinases activated during engagement of the erythropoietin receptor, the Janus family kinase Jak-2 and the c-fps/fes kinase. Immunoblotting studies with extracts from mouse hematopoietic cells demonstrated that Jak2, but not c-fes, was present in anti-SHP-1 immunoprecipitates, suggesting that SHP-1 selectively associates with Jak2 in vivo. Consistent with this, when SHP-1 was coexpressed with these kinases in Cos-7 cells, it associated with and dephosphorylated Jak2 but not c-fes. Transient cotransfection of truncated forms of SHP-1 with Jak2 demonstrated that the SHP-1-Jak2 interaction is direct and is mediated by a novel binding activity present in the N terminus of SHP-1, independently of SH2 domain-phosphotyrosine interaction. Such SHP-1-Jak2 interaction resulted in induction of the enzymatic activity of the phosphatase in in vitro protein tyrosine phosphatase assays. Interestingly, association of the SH2n domain of SHP-1 with the tyrosine phosphorylated erythropoietin receptor modestly potentiated but was not essential for SHP-1-mediated dephosphorylation of Jak2 and had no effect on c-fes phosphorylation. These data indicate that the main mechanism for regulation of Jak2 phosphorylation by SHP-1 involves a direct, SH2-independent interaction with Jak2 and suggest the existence of similar mechanisms for other members of the Jak family of kinases. They also suggest that such interactions may provide one of the mechanisms that control SHP-1 substrate specificity.  相似文献   

4.
Protein phosphatase 2A (PP2A) is an abundant, multifunctional serine/threonine-specific phosphatase that stimulates simian virus 40 DNA replication. The question as to whether chromosomal DNA replication also depends on PP2A was addressed by using a cell-free replication system derived from Xenopus laevis eggs. Immunodepletion of PP2A from Xenopus egg extract resulted in strong inhibition of DNA replication. PP2A was required for the initiation of replication but not for the elongation of previously engaged replication forks. Therefore, the initiation of chromosomal DNA replication depends not only on phosphorylation by protein kinases but also on dephosphorylation by PP2A.  相似文献   

5.
Some forms of G protein-coupled receptor signaling, such as activation of mitogen-activated protein kinase cascade as well as resensitization of receptors after hormone-induced desensitization, require receptor internalization via dynamin-dependent clathrin-coated pit mechanisms. Here we demonstrate that activation of beta2-adrenergic receptors (beta2-ARs) leads to c-Src-mediated tyrosine phosphorylation of dynamin, which is required for receptor internalization. Two tyrosine residues, Tyr231 and Tyr597, are identified as the major phosphorylation sites. Mutation of these residues to phenylalanine dramatically decreases the c-Src-mediated phosphorylation of dynamin following beta2-AR stimulation. Moreover, expression of Y231F/Y597F dynamin inhibits beta2-AR internalization and the isoproterenol-stimulated mitogen-activated protein kinase activation. Thus, agonist-induced, c-Src-mediated tyrosine phosphorylation of dynamin is essential for its function in clathrin mediated G protein-coupled receptor endocytosis.  相似文献   

6.
7.
Interleukin-5 (IL-5) regulates the growth and function of eosinophils. It induces rapid tyrosine phosphorylation of Lyn and Jak2 tyrosine kinases. The role of tyrosine phosphatases in IL-5 signal transduction has not been investigated. In this study, we provide first evidence that SH2 protein tyrosine phosphatase 2 (SHPTP2) phosphotyrosine phosphatase plays a key role in prevention of eosinophil death by IL-5. We found that IL-5 produced a rapid activation and tyrosine phosphorylation of SHPTP2 within 1 min. The tyrosine phosphorylated SHPTP2 was complexed with the adapter protein Grb2 in IL-5-stimulated eosinophils. Furthermore, SHPTP2 appeared to physically associate with beta common (betac) chain of the IL-5 receptor (IL-5betacR). The association of SHPTP2 with IL-5betacR was reconstituted using a synthetic phosphotyrosine-containing peptide, betac 605-624, encompassing tyrosine (Y)612. The binding to the phosphotyrosine-containing peptide increased the phosphatase activity of SHPTP2, whereas the same peptide with the phosphorylated Y612--> F mutation did not activate SHPTP2. Only SHPTP2 antisense oligonucleotides, but not sense SHPTP2, could inhibit tyrosine phosphorylation of microtubule-associated protein kinase, and reverse the eosinophil survival advantage provided by IL-5. Therefore, we conclude that the physical association of SHPTP2 with the phosphorylated betac receptor and Grb2 and its early activation are required for the coupling of the receptor to the Ras signaling pathway and for prevention of eosinophil death by IL-5.  相似文献   

8.
Interleukin-6 (IL-6) belongs to the family of the "four-helix bundle" cytokines. The extracellular parts of their receptors consist of several Ig- and fibronectin type III-like domains. Characteristic of these receptors is a cytokine-binding module consisting of two such fibronectin domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine (WSXWS) sequence motif. On target cells, IL-6 binds to a specific IL-6 receptor (IL-6R), and the complex of IL-6.IL-6R associates with the signal transducing protein gp130. The IL-6R consists of three extracellular domains. The NH2-terminal Ig-like domain is not needed for ligand binding and signal initiation. Here we have investigated the properties and functional role of the third membrane proximal domain. The protein can be efficiently expressed in bacteria, and the refolded domain is shown to be sufficient for IL-6 binding. When complexed with IL-6, however, it fails to associate with the gp130 protein. Since the second and the third domain together with IL-6 can bind to gp130 and induce signaling, our data demonstrate the ligand binding function of the third domain and point to an important role of the second domain in complex formation with gp130 and signaling.  相似文献   

9.
Maternal administration of thyrotropin-releasing hormone, alone or in combination with corticosteroid, accelerates functional, morphologic and biochemical fetal lung maturation. However, the dose-response relationship of maternal thyrotropin-releasing hormone treatment and acceleration of fetal lung ultrastructural maturation or disaturated phosphatidylcholine content has not been investigated. We administered (i.p.) saline or thyrotropin-releasing hormone (0.2, 0.4 or 0.6 mg/kg/dose) to the pregnant Balb/c mouse on days 16 and 17 (b.i.d.) and on day 18 of gestation (1 h prior to killing). Morphometric ultrastructural analysis and quantitation of disaturated phosphatidylcholine content was done on the 18-day gestation fetal lung. Maternal thyrotropin-releasing hormone treatment resulted in an increase in the number of lamellar bodies and depletion of glycogen in fetal lung type II cells, and an increase in the lung airspace to parenchymal ratio. In addition, a striking difference in the pattern of lung growth was noted in the thyrotropin-releasing-hormone-treated (0.4 and 0.6 mg/kg/dose) groups. These lungs had larger air spaces, thinner alveolar septae and more air-blood barriers. Maternal thyrotropin-releasing hormone treatment did not influence fetal lung disaturated phosphatidylcholine content. We conclude that in the mouse, maternal thyrotropin-releasing hormone treatment enhances fetal lung structural maturation and propose that thyrotropin-releasing hormone plays a role in mammalian fetal lung growth.  相似文献   

10.
The c-Yes proto-oncogene (pp62c-Yes) encodes a non-receptor-type protein tyrosine kinase (NRPTK) of the Src family. c-Yes activities and protein levels are elevated in human melanoma and melanocyte cell lines. Because the neurotrophins (NT) are important in the progression of melanoma to the brain-metastatic phenotype, we determined whether NT stimulate c-Yes activity in human MeWo melanoma cells and two variant sublines with opposite metastatic capabilities, 3 S 5 and 70W. The highly brain-metastatic 70W subline had an intrinsically higher c-Yes activity than parental MeWo or poorly metastatic 3 S 5 cells. c-Yes kinase was further induced by the prototypic human NT, nerve growth factor (NGF) in a dose and time-dependent manner. In contrast, c-Src activity (pp60-Src) was similar in all these cells and unaffected by NGF exposure. Additionally, human NGF and neurotrophin-3 stimulated c-Yes in brain-metastatic 70W cells. The magnitude of c-Yes activation correlated with the degree of invasion of 70 W cells following incubation of these neurotrophins. To further examine NT stimulation of c-Yes in melanoma cells, three additional cell lines were examined. Metastatic TXM-13 and TXM-18 increased c-Yes activity in response to NGF. In contrast, no increase was observed in low-metastatic TXM-40 cells. Together, these data suggest that altered c-Yes expression may play a role in the malignant progression of the human melanocyte towards the brain-metastatic phenotype and that NT enhance the activity of c-Yes in signaling penetration into the matrix of NT-rich stromal microenvironments such as the brain.  相似文献   

11.
Progressive myoclonus epilepsy of the Lafora type or Lafora disease (EPM2; McKusick no. 254780) is an autosomal recessive disorder characterized by epilepsy, myoclonus, progressive neurological deterioration and glycogen-like intracellular inclusion bodies (Lafora bodies). A gene for EPM2 previously has been mapped to chromosome 6q23-q25 using linkage analysis and homozygosity mapping. Here we report the positional cloning of the 6q EPM2 gene. A microdeletion within the EPM2 critical region, present inhomozygosis in an affected individual, was found to disrupt a novel gene encoding a putative protein tyrosine phosphatase (PTPase). The gene, denoted EPM2, presents alternative splicing in the 5' and 3' end regions. Mutational analysis revealed that EPM2 patients are homozygous for loss-of-function mutations in EPM2. These findings suggest that Lafora disease results from the mutational inactivation of a PTPase activity that may be important in the control of glycogen metabolism.  相似文献   

12.
13.
Src homology 2 (SH2) domain-containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase-mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-zeta chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2-associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3'-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3'-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process.  相似文献   

14.
Treatment of NIH 3T3 cells with cytochalasin D (10 microM, 1 h at 37 degrees C) disrupted the actin cytoskeleton and changed the cells from a planar, extended morphology, to a rounded shape. Calcium mobilization by ATP or by platelet-derived growth factor was abolished, while the ability of thapsigargin (2 microM) to empty calcium stores and activate calcium influx was unaffected. Similar experiments with nocodazole to depolymerize the tubulin network yielded identical results. Platelet-derived growth factor induced an increase in inositol phosphates, and this increase was undiminished in the presence of cytochalasin D. Therefore, the blockade of agonist responses by this drug does not result from decreased phospholipase C. Injection of inositol 1,4,5-trisphosphate (IP3) released calcium to the same extent in control and cytochalasin D-treated cells. Confocal microscopic studies revealed a significant rearrangement of the endoplasmic reticulum after cytochalasin D treatment. Thus, disruption of the cytoskeleton blocks agonist-elicited [Ca2+]i mobilization, but this effect does not result from a lower calcium storage capacity, impaired function of the IP3 receptor, or diminished phospholipase C activity. We suggest that cytoskeletal disruption alters the spatial relationship between phospholipase C and IP3 receptors, impairing phospholipase C-dependent calcium signaling. Capacitative calcium entry was not altered under these conditions, indicating that the coupling between depletion of intracellular calcium stores and calcium entry does not depend on a precise structural relationship between intracellular stores and plasma membrane calcium channels.  相似文献   

15.
We show that the cell division gene ftsQ of Streptomyces coelicolor A3(2) is dispensable for growth and viability but is needed during development for the efficient conversion of aerial filaments into spores. Combined with our previous demonstration that ftsZ of S. coelicolor is not needed for viability, these findings suggest that cell division has been largely co-opted for development in this filamentous bacterium. This makes S. coelicolor an advantageous system for the study of cell division genes.  相似文献   

16.
The role of endothelin (ET)-1-mediated cytosolic calcium ([Ca2+]i) elevation in regulating ET-1-induced prostaglandin endoperoxide synthase, prostaglandin G/H synthase (PGHS)-2 mRNA expression and protein synthesis was investigated in mesangial cells (MC). Ionomycin, a calcium ionophore, and thapsigargin, an inhibitor of calcium ATPase, mimicked the ET-1-stimulated PGHS-2 mRNA and protein induction. Inhibition of [Ca2+]i increases with (2-?C2-bis-(carboxymethyl)-amino-5 methylphenoxy]methyl?-6-methoxy-8-bis-(carboxymethyl)-aminoquinoline tetra-(acetoxymethyl)ester (Quin/AM), a calcium chelator, or with the combined presence of [8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, HCl] (TMB), an inhibitor of intracellular calcium stores release, and ethyleneglycol-bis-(beta-aminoethyl)- N,N,N',N'-tetra-acetic acid (EGTA) suppressed ET-1, as well as ionomycin and thapsigargin-mediated PGHS-2 mRNA and protein formation. Also, the ET-1-, ionomycin-, and thapsigargin-induced PGHS-2 mRNA expression and protein formation was inhibited in MC pretreated with inhibitors of calcium calmodulin kinase. In contrast, these conditions did not inhibit interleukin (IL)-1-induced PGHS-2 mRNA expression and protein synthesis. Pretreatment with tyrosine kinase inhibitors abolished the ET-1-, ionomycin-, thapsigargin-, and IL-1-mediated PGHS-2 mRNA and protein induction. ET-1-, ionomycin-, and thapsigargin- induced protein tyrosine phosphorylation, but not IL-1-induced protein tyrosine phosphorylation, was suppressed by inhibiting either [Ca2+]i elevation or calcium calmodulin kinase activation. It was concluded that elevation of [Ca2+]i and activation of calcium calmodulin kinases are upstream mediators of ET-1-induced PGHS-2 gene expression through activation of non-receptor-linked protein tyrosine kinase in MC.  相似文献   

17.
Induction of immediate-early genes c-jun, junB, and c-fos was demonstrated during echovirus 1 infection in a human osteogenic sarcoma (HOS) cell line. Tenfold induction was seen at 10 h postinfection, corresponding approximately to the end of the first replication cycle of the virus. Echovirus 1 uses VLA-2 integrin as its cellular receptor, and ligand binding by integrin is known to trigger signal transduction pathways ultimately activating immediate-early genes. In the present study, however, VLA-2 binding alone was not sufficient to induce their expression; viral replication was needed. This conclusion was based on the observations that no stimulation of the immediate-early genes occurred in the MG-63 cell line where the virus attached only to VLA-2 but was not able to replicate and that induction of these genes was observed when the HOS cells were infected with echovirus type 7, known to use a different cellular receptor. Induction was not seen in the presence of the antiviral compound WIN 54954, which evidently inhibits the uncoating but not receptor binding of echovirus 1, suggesting that viral replication triggers the activation of the immediate-early genes. The induction of these genes may have a role in viral replication and in the pathogenesis of infection.  相似文献   

18.
Mitotic fragmentation of the Golgi apparatus can be largely explained by disruption of the interaction between GM130 and the vesicle-docking protein p115. Here we identify a single serine (Ser-25) in GM130 as the key phosphorylated target and Cdc2 as the responsible kinase. MEK1, a component of the MAP kinase signaling pathway recently implicated in mitotic Golgi fragmentation, was not required for GM130 phosphorylation or mitotic fragmentation either in vitro or in vivo. We propose that Cdc2 is directly involved in mitotic Golgi fragmentation and that signaling via MEK1 is not required for this process.  相似文献   

19.
The role of signal transduction during chemotaxis of Dictyostelium discoideum cells to cAMP and folic acid was investigated using a radial bioassay technique. The effects of signalling agonists were assessed by measuring the diameters of visible rings formed by the outward migration of amoebae up radial gradients of chemoattractant. This rapid and simple bioassay method yields chemotactic rates equivalent to more complex assay systems. In support of previous studies, chemotaxis toward both cAMP and folic acid was inhibited in a dose-dependent manner by LaCl3, EDTA, chlorotetracycline and A1F3, supporting the importance of calcium ions and G protein-mediated signalling in both chemotactic events. The work was extended by examining the effects of the protein tyrosine kinase inhibitor genistein. This agent inhibited chemotaxis to folate in a dose-dependent manner but had no observable effect on chemotaxis toward cAMP. The notion that phosphorylation of proteins on tyrosine residues is critical for chemotaxis to folic acid was supported by Western blotting experiments with monoclonal anti-phosphotyrosine antibodies which detected two candidate proteins of M(r) 52,000 and 38,000 in the membranes of folate-responsive amoebae. These two bands disappeared with starvation which leads to the loss of responsiveness of folic acid and the acquisition of responsiveness to cAMP. Time-lapse videomicrography also revealed some unique differences in chemotactic response. Starved cells responded to cAMP as individuals but feeding cells chemoattracted to folic acid on a populational basis. The ability to compare two different types of chemotaxis using a simple, rapid and accurate bioassay system should enhance future studies of chemotaxis in wild-type and mutant strains of D. discoideum.  相似文献   

20.
Previous studies by others have shown that thiols, such as glutathione, cause cleavage of DNA in the presence of Cu(II) ions and that the hydroxyl radical derived from molecular oxygen is the major cleaving species. In this paper, we present several lines of evidence that strongly suggest that molecular oxygen is not essential for DNA cleavage and that thiyl radicals may also be involved. Indirect evidence is presented to indicate that glutathione may substitute oxygen as an electron acceptor. In addition, DNA degradation occurs to a significant extent under anaerobic conditions and no inhibition of single-strand cleavage of supercoiled plasmid DNA is seen in the presence of superoxide dismutase and catalase. In view of the ubiquitous presence of glutathione, these results could be of interest under certain diseased conditions where copper concentrations are elevated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号