共查询到20条相似文献,搜索用时 62 毫秒
1.
为解决复杂场景中目标跟踪问题,提出了一种噪声未知情况下的自适应无迹粒子滤波(A-UPF)算法。算法采用改进的Sage-Husa估计器对系统未知噪声的统计特性进行实时估计和修正,并与无迹Kalman粒子滤波器相结合产生优选的建议分布函数,降低系统估计误差的同时有效提升了系统的抗噪声能力。实验结果表明,本文方法对于复杂条件下的目标跟踪问题具有较高的精度和较强的鲁棒性。 相似文献
2.
3.
交互式多模型贝努利粒子滤波器(Interacting Multiple Model Bernoulli Particle Filter, IMMBPF)适用于杂波环境下的机动目标跟踪。但是IMMBPF将模型信息引入粒子采样过程中会导致用于逼近当前时刻真实状态与模型的粒子数减少,而且每次递推各模型间的粒子都要进行交互,存在计算量过大的缺点。为提升IMMBPF中单个采样粒子对于真实目标状态和模型逼近的有效性,该文提出一种改进的多模型贝努利粒子滤波器(Multiple Model Bernoulli Particle Filter, MMBPF)。预先选定每一个模型的粒子数,且模型间的粒子不需要进行交互,减少了计算负荷。模型概率由模型似然函数计算得到,在不改变模型的马尔科夫性质的条件下避免了小概率模型的粒子退化现象。仿真实验结果表明,所提出的MMBPF与IMMBPF相比,用较少的粒子数就可获得更优的跟踪性能。 相似文献
4.
纯方位目标跟踪是一个重要的研究课题。它要解决的问题是:利用含有噪声的方位数据来估计目标的真实运动轨迹。本文提出了一种基于粒子群优化的改进粒子滤波算法。这种算法可以将最新的观测值引入观测估计,提高了预估精度,减少所需的粒子数,从而实现对目标真实运动轨迹更好的跟踪。 相似文献
5.
一种基于卡尔曼滤波及粒子滤波的目标跟踪算法 总被引:2,自引:3,他引:2
针对卡尔曼跟踪算法在非线性非高斯情况下跟踪结果不再准确,以及粒子滤波跟踪算法计算量大难以满足实时性的缺陷,提出了卡尔曼滤波及粒子滤波相结合的算法。利用卡尔曼滤波进行跟踪得到候选目标并计算目标模型与候选模型的匹配程度,若与目标模型匹配度小于一定阈值,则转换跟踪方式利用粒子滤波进行跟踪来修正卡尔曼滤波结果;同时,采用"模板缓冲区法"对目标模型进行更新以保证跟踪的连续性、稳定性及准确性。实验结果表明,这种跟踪算法既发挥了卡尔曼滤波的实时性又保持了粒子滤波的准确性,有较好的跟踪性能。 相似文献
6.
一种基于差分演化的粒子滤波算法 总被引:1,自引:0,他引:1
针对粒子滤波(Particle Filter, PF)存在的粒子退化和贫化问题,该文提出一种基于差分演化(Differential Evolution, DE)的PF算法。首先,为了充分利用最新的观测信息,采用无迹卡尔曼滤波(Unscented Kalman Filter, UKF)来产生重要性分布,对重要性分布产生的采样粒子不再做传统重采样操作,而是直接把采样粒子当作DE中的种群样本,粒子权重作为样本的适应函数,对粒子做差分变异、交叉、选择等迭代优化,最后得到最优的粒子点集。试验结果表明,该算法有效缓解了传统PF算法中的粒子退化和贫化,提高了粒子的利用率,具有较好的估计精度。 相似文献
7.
8.
雷达目标跟踪量测系统常受到闪烁噪声干扰,导致传统滤波算法的滤波性能急剧下降甚至发散。文中提出了改进粒子滤波算法,利用扩展卡尔曼滤波产生重要性概率密度函数。提出改进的重采样策略,提高采样粒子的有效性。将文中算法与PF及EKPF算法进行了仿真比较,结果表明该算法具有较优的跟踪性能。 相似文献
9.
10.
基于卡尔曼粒子滤波的目标跟踪算法 总被引:1,自引:0,他引:1
目标跟踪在计算机视觉领域有着重要的应用。文中在对运动目标跟踪算法进行研究之后,应用卡尔曼粒子滤波算法进行运动目标的跟踪,同时利用Matlab 对卡尔曼滤波算法、粒子滤波算法及卡尔曼粒子滤波算法进行了实验仿真。实验结果表明,运用卡尔曼粒子滤波算法能够更快、更准确地对运动目标进行跟踪,可将其广泛应用于目标跟踪中。 相似文献
11.
针对电磁探测卫星的重访时间间隔长、且捕获得到目标信息的时间为随机,目标运动模型难于精确建立,数据杂波干扰强等问题,结合卫星电子信息给出的辐射源电磁特征,基于粒子滤波提出了一种稳健的海上舰船目标跟踪算法。首先,采用二阶自回归的状态转移模型确定候选量测的关联区域,从而减少杂波的干扰;然后选取与目标电磁特征相似的量测进行粒子滤波的状态更新,并通过重采样操作剔除权值较小的粒子以提高跟踪算法的精确性与稳健性。仿真与真实数据的实验结果表明,该方法在强杂波干扰下可以稳定跟踪卫星电子信息中的海上舰船目标并且具有较高的精确性与稳健性。 相似文献
12.
13.
14.
Target tracking is one of the most important applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of sensor nodes. A new robust and energy-efficient collaborative target tracking framework is proposed in this article. After a target is detected, only one active cluster is responsible for the tracking task at each time step. The tracking algorithm is distributed by passing the sensing and computation operations from one cluster to another. An event-driven cluster reforming scheme is also proposed for balancing energy consumption among nodes. Observations from three cluster members are chosen and a new class of particle filter termed cost-reference particle filter (CRPF) is introduced to estimate the target motion at the cluster head. This CRPF method is quite robust for wireless sensor network tracking applications because it drops the strong assumptions of knowing the probability distributions of the system process and observation noises. In simulation experiments, the performance of the proposed collaborative target tracking algorithm is evaluated by the metrics of tracking precision and network energy consumption. 相似文献
15.
16.
为提高杂波条件下的机动目标被动跟踪的性能,提出了一种新的粒子滤波目标被动跟踪算法。在声纳的输出端,提取信号的幅度信息(AI),建立多模型对转弯机动目标进行状态估计,以粒子滤波算法作为基本跟踪滤波算法,将AI与概率数据关联(PDA)算法中的似然比相结合,详细推导了结合AI的粒子滤波目标被动跟踪算法(PF-AI)实现的具体过程。在同一被动目标跟踪场景,同时使用单纯PDA算法、结合辅助信息的PDA算法和PF-AI进行被动跟踪仿真,分析了轨迹跟踪性能,并使用均方根误差比较了误差性能。仿真结果表明,与两种基于PDA的跟踪算法相比,PF-AI具有更高的跟踪精度,且算法易于实现。 相似文献
17.
18.
《现代电子技术》2018,(2):21-25
在实现高精确度和快速的目标跟踪过程中,相关滤波是一个非常好的选择,但是目前所有的相关滤波跟踪方法仍然无法解决遮挡和光照变化等因素造成的干扰。因此,在传统核相关滤波器(KCF)的基础上,提出多特征图核相关滤波器(MKCF)的目标快速跟踪方法。首先,由初始化目标区域生成多个特征图,并通过对正则化最小二乘(RLS)分类器学习获得位置和尺度核相关滤波器(KCF);然后,随机选取一个特征图,寻找位置和尺度KCF输出响应的最大值,完成目标位置和尺度的检测;最后,随机选择需要在线更新的目标模型。经过试验测试,对比KCF,MKCF的平均中心位置误差(CLE)减少了5像素,平均成功率(SR)提高了10.9%,平均距离精度提高了6.7%;MKCF在目标发生尺度变化、光照变化、形态变化、目标遮挡、轻度旋转及快速运动等复杂情况下均有较强的适应性,具有重要的理论和应用研究价值。 相似文献
19.
机动目标通常不是做恒定的运动,其运动状态会随时间的变化而变化.这就使描述系统运动的状态方程是非线性的,而且系统参数会不断变化.传统的推广卡尔曼滤波适用于定系统定参数的情况,如果运用到机动目标跟踪上会导致误差增大甚至滤波发散.基于此,将强跟踪滤波运用到机动目标跟踪上.强跟踪滤波在卡尔曼滤波的基础上引入了多重渐消因子,使强跟踪滤波具有极强的跟踪能力和较好地鲁棒性,因此可以很好地解决变系统变参数的问题.通过仿真,将强跟踪滤波与UT-BLUE滤波方法和EKF滤波方法进行比较,结果表明了该滤波方法的有效性和优越性. 相似文献
20.
《现代电子技术》2022,(1):40-44
针对传统粒子滤波算法在跟踪目标所处环境迁移,目标姿态变化和发生遮挡时容易出现跟踪框漂移现象,提出一种基于灰狼算法优化的粒子滤波跟踪方法(GWOPF)。首先,将全局特征HSV颜色特征和局部特征方向梯度直方图(HOG)特征加权融合建立观测模型;然后,用灰狼算法(GWO)优化粒子滤波算法结构,利用GWO位置更新机制改善粒子空间分布状况,在粒子重采样前进行权值自适应调节,解决原始粒子滤波方法采样时出现的粒子退化问题并优化滤波效果。实验结果表明,改进后的算法在具有挑战的Tiger和Girl视频序列中跟踪成功率分别达到了97.5%和95.0%,单帧处理时间缩短至24.6 ms和18.4 ms,具有较高的跟踪精度和良好的鲁棒性,能够应对跟踪目标发生旋转、部分遮挡等情况以及实时性要求。 相似文献