首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tests performed within the framework of earlier RWTÜV projects together with results obtained elsewhere with regard to the time dependence of fracture mechanics data show that time effects reduced the toughness of materials, according to the nature of the test (extremely slow load rate or hold times with sustained load).

Reduction in toughness has an effect on the following:

• - decrease in critical material data (J0, δi)
• - levelling off of the crack resistance curve J = J(Δa) and in consequence a decrease of tearing modulus.
This tendency is confirmed quantitatively by recent test results. These tests were performed with the material 15 Mn Ni 63 at room temperature with hold times under sustained load and according to the appropriate standards (without hold times). The tests show that hold times cause additional stable crack growth. The resulting JΔa curve is lower and less sloping than the curve obtained in a standardized test. The time effect should be taken into account in a safety analysis.  相似文献   

2.
Creep-fatigue crack growth at the operating temperature of LMFBR can be characterized by ΔJF and J′ (same as C*). Type 304 stainless steel, the main structural material of the Japanese LMFBR, shows notable cyclic hardening at elevated temperatures. Evaluation of these J-integrals with the finite-element method is strongly affected by the reference strain range when the cyclic hysteresis' is used as the stress-strain relation.In this paper, an evaluation method for ΔJF and J′ with a cyclic stress-strain curve (ΔσΔ relation) is proposed and verified by experimental results. The evaluation method proposed here does not require cyclic calculations but is monotonic and the effect of the reference strain range is relatively small.  相似文献   

3.
In the frame of our analytical work the applicability of ductile fracture mechanical J-integral concept on mechanical and thermal shock loaded structures with flaws is investigated. By that the behaviour of possible flaws in components of power plants during accidents can be described (e.g. reactor pressure vessel and piping during emergency cooling).The analyses presented in this paper have been performed with a version of the finite element code ADINA [1] extended by fracture mechanical options. The postanalyses of the first series of pressurized thermal shock experiments (PTSE-1A, B, C) performed at ORNL show stress intensity factors (KI) calculated from J-integrals which are about 10% lower than values of OCA programs [2] based on the linear elastic K-concept usually used for brittle materials. The discrepancy may be referred to different treatment of the influence of plasticity. The results assessed in the frame of the cleavage fracture concept coincide well with the measured times respectively crack tip temperatures at crack initiation and arrest.In the first thermal shock experiment (NKS-1) performed at the MPA-Stuttgart a circumferentially deep cracked test cylinder with overall upper shelf material conditions has been investigated. The postcalculations based on the J-integral with JR-controlled crack growth show good coincidence between analytical determined and measured structure and fracture mechanical quantities but they are accompanied with numerical problems due to unloading and large plasticity effects.  相似文献   

4.
Ontario Hydro has developed a leak-before-break (LBB) methodology for application to large diameter piping (21, 22 and 24 inch) Schedule 100 SA106B heat transport (HT) piping as a design alternative to pipe whip restraints and in recognition of the questionable benefits of providing such devices. Ontario Hydro's LBB approach uses elastic-plastic fracture mechanics (EPFM).In order to assess the stability of HT piping in the presence of hypothetical flaws, the value of the material J-integral associated with crack extension (JR curve) must be known. In a material test program J-resistance curves were determined from various pipe heats and four different welding procedures that were developed by Ontario Hydro for nuclear Class 1 piping. The test program was designed to investigate and quantify the effect of various factors such as test temperature, crack plane orientation and welding effects which have an influence on fracture properties. An acceptable lower bound J-resistance curve for the piping steels and welds were obtained by machining maximum thickness specimens from the pipes and weldments and by testing side-grooved compact tension specimens. This paper addresses the effect of test temperature and post-weld heat treatment on the J-resistance curves from the welds.The fracture toughness of all the welds at 250°C was lower than that at 20°C. Welds that were post-weld heat treated showed high crack initiation toughness, Jlc, rising J-resistance curves and stable and ductible crack extension. Non post-weld heat treated welds, while remaining tough and ductile, showed comparatively lower JIc, and J-resistance curves at 250°C. This drop in toughness is possibly due to a dynamic strain aging mechanism evidenced by serrated load-displacement curves. The fracture toughness of non post-weld heat treated welds increased significantly after a comparable post-weld heat treatment.The test procedure was validated by comparing three test results against independent tests conducted by Materials Engineering Associates (MEA) of Lanham, Maryland. The JIc and J-resistance curves obtained by Ontario Hydro and MEA were comparable.  相似文献   

5.
The objective of this investigation was to evaluate the use of small specimen JR curves in assessing the fracture resistance behavior of reactor vessels containing low upper shelf (LUS) toughness weldments. As required by the U.S. Code of Federal Regulations (10 CFR, Part 50), reactor vessel beltline materials must maintain an upper shelf Charpy V-Notch (CVN) energy of at least 50 ft-lbs (68 J) throughout vessel life. If CVN values from surveillance specimens fall below this value, the utility must demonstrate to the U.S. Nuclear Regulatory Commission (NRC) that the lower values will provide “margins of safety against fracture equivalent to those required by Appendix G of the ASME Boiler and Pressure Vessel Code”. This paper will present recommendations regarding the material fracture resistance aspects of this problem and outline an analysis procedure for demonstrating adequate fracture safety based on CVN values.It is recommended that the deformation formulation of the J-integral be used in the analysis described above. For cases where J-integral fracture toughness testing will be required, the ASTM E1152-87 procedure should be followed, however, data should be taken to 50% to 60% of the specimen remaining ligament. Extension of the crack growth validity limits for JR curve testing, as described in E1152-87, can be justified on the basis of a “J-controlled crack growth zone” analysis which shows an engineering basis for J-control to 25% to 40% of the specimen remaining ligament. If J-R curve extrapolations are required for the analysis, a simple power law fit to data in the extended validity region should be used. The example analysis performed for low upper shelf weld material, showed required CVN values for a reactor vessel with a 7.8 inch (198 mm) thick wall ranging from 32 ft-lbs (43 J) to 48 ft-lbs (65 J), depending on the magnitude of the thermal stress component.  相似文献   

6.
Applicability of nonlinear fracture mechanics parameters, i.e. J-integral, crack tip opening displacement (CTOD), and crack tip opening angle (CTOA), to evaluation of stress corrosion crack (SCC) propagation rate was investigated using fully annealed zirconium plates and Zircaloy-2 tubing, both of which produce SCC with comparatively large plastic strain in an iodine environment at high temperatures.Tensile SCC tests were carried out at 300°C for center-notched zirconium plates and internal gas pressurization SCC tests at 350°C, for Zircaloy-2 tubing, to measure the SCC crack propagation rate. The J-integral around semi-elliptical SCC cracks produced in Zircaloy-2 tubing was calculated by a three-dimensional finite element method (FEM) code.The test results revealed that the SCC crack propagation rate dc/dt could be expressed as a function of the J-integral, which is the most frequently used parameter in nonlinear fracture mechanics, by the equation dc/dt = C · Jn, where C and n were experimental constants.Among the other parameters, CTOD and CTOA, the latter appeared to be useful for assessing the crack propagation rate, because it had a tendency to hold a constant value at various crack depths.  相似文献   

7.
Two different geometries, a centrally cracked panel and a three-point bend bar, are modelled with aid of the finite element program ABAQUS. Elastic-plastic behaviour with a realistic linear hardening modulus is assumed. By simulation of the growth with the aid of nodal relaxation, the J-value for a remote path around the growing tip is obtained for some different load-crack growth histories. This JF-value is compared to the JD-value that results if the crack tip is assumed to be stationary at the current length. It is found that the JD- and JF-values agree well for crack growth histories satisfying the criteria for J-characterization. However, after examination of the crack surface displacements it was found that the results for the bend geometry and the tension geometry, respectively, did not coincide for corresponding J-values, except at low load levels. This raises doubts about the abilities of J to characterize the state at a growing tip.  相似文献   

8.
The different toughness tests performed on two pressure vessel steels with very different upper shelves served to make a number of observations concerning the shifts in the transition temperature due to the effect of irradiation, as well as changes in toughness with temperature in the ductile region.With respect to shifts in the transition temperature, the following was observed: the shift obtained with precracked charpy test specimens was narrower than with the others; the shift obtained with charpy V impact tests was substantially equal to that obtained with CT test specimens — wider in the case of steel A, but slightly narrower in that of steel H.With respect to toughness values in the ductile region: the toughness values obtained using precracked charpy test specimens are significantly higher than those obtained with CT test specimens for static tests; 25and 12.5 mm thick CT test specimens display comparable variations in J1C and dJ/da, but with wide scattering; the effect of irradiation, if any, is of the same order of magnitude as the scattering of the results — however, a test temperature effect is observed; the variation in toughness with temperature is determined more easily by considering a J value corresponding to a stable crack propagation of 1 mm, so that ; this variation of JΔal with temperature is substantially the same for both steels, or about −30% at 70 or 80°C, and −50% at 290°C.  相似文献   

9.
The method of statically indeterminate fracture mechanics (SIFM) is application of elastic-plastic fracture mechanics to statically indeterminate problems. Application of SIFM has been developed for axially cracked cylinder problems under axisymmetric pressurized thermal shock, PTS loading. This method allows us to evaluate the J-integral in an explicit form and is efficient in clarifying the mechanical characteristics of the PTS event. This paper describes a parametric study of the J-integral under PTS loading by using SIFM.  相似文献   

10.
Small I.D. circumferential defects have been identified in many steam generator tubes. The origin of the cracks is known to be chemical, not mechanical. A fracture mechanics evaluation has been conducted to ascertain the stability of tube cracks under steady-state and anticipated transient conditions. A spectrum of hypothetical crack sizes was interacted with tube stresses derived from the load evaluation using the methods of linear elastic fracture mechanics (LEFM). Stress intensities were calculated for part-through wall cracks in cylinders combining components due to membrane stress, bending stress, and stresses due to internal pressure acting on the parting crack faces as the loads are cycled.The LEFM computational code, “BIGIF”, developed for EPRI, was used to integrate over a range of stress intensities following the model to describe crack growth in INCO 600 at operating temperature using the equation (ΔK)3.5.The code was modified by applying ΔKTh, the threshold stress intensity range. Below ΔKTh small cracks will not propagate at all. Appropriate R ratio values were employed when calculating crack propagation due to high cycle or low cycle loading.Cracks that may have escaped detection by ECT will not jeopardize tube integrity during normal cooldown unless these cracks are greater than 180° in extent. Large non-through-wall cracks that would jeopardize tube integrity are not expected to evolve because in axi-symmetric tensile stress fields, cracks propagate preferentially through the tube wall rather than around the circumference. Tube integrity can be demonstrated for mid-span tube regions and for the transition region as well.The as-repaired transition geometry is a design no less adequate than the original. The as-repaired condition represents an improvement in the state of stress due to mechanical and thermal loads as compared to the original.  相似文献   

11.
J-integral fracture toughness tests were performed on full scale pipe specimens to assess the fracture safety performance of two reactor piping alloys. The two alloys investigated were ASTM A106 Grade B carbon steel and circumferentially welded Type 304 stainless steel.The full scale pipe fracture tests were performed on 1.2 m long, circumferentially cracked pipes loaded in four-point bending on a variably compliant test bed. Results of the experiments were analyzed using the limit load approach currently being considered for inclusion in Section XI of the ASME Code. The results were also evaluated using two tearing instability approaches. One approach assumed elastic-perfectly plastic material behavior and the other accounted for material hardening by requiring actual load and displacement data.The limit load analysis provided a good prediction of the maximum load carrying capacity of the pipe specimens in most cases. The results were especially good for the ASTM A106 steel pipes when the materials property data was used to calculate the flow stress. The J-integral tearing instability analysis was shown to accurately describe the ductile tearing instability behavior of the ASTM A106 steel pipe providing material hardening was taken into account.  相似文献   

12.
With the progress of stable crack growth of surface flaws observed in panels or pressure vessels a canoe-shaped crack front is formed. The crack propagation in the longitudinal direction is more pronounced that in the wall thickness direction. Therefore, the canoe effect is important with respect to a leak-before-break assessment because the actual through crack length is influenced by this effect. Based on the J integral concept crack initiation and crack propagation in ductile materials are described by J resistance curves which were found to be dependent on the constraint effect of the specimen geometry. Prediction of local crack growth by taking a conservative (flat) JR-curve into account results in a nonconservative estimate of the axial extension of the surface crack [W. Brocks, H. Veith and K. Wobst, in K. Kussmaul (ed.), Fracture Mechanics Verification by Large Scale Testing, Mech. Eng. Publication Limited, London, 1991]. This means that the influence of local constraint effects on crack resistance has to be considered.Ductile crack growth of semi-elliptical surface cracks in side-grooved specimens F(SCTsg) under tension made from German standard steel StE 460 will be reported on. The development of the canoe effect of an SCTsg specimen was also analysed by a finite element simulation of ductile crack growth which was modelled by using the node shift and node release technique and controlled by crack mouth opening displacement versus crack growth curves from the experiment. The simulation allows the determination of local JR-curves in dependence on the local multiaxility of the stress state to verify the constraint modified J concept. It is demonstrate that the slope of the JR-curves decreases with increasing multiaxiality of the stress state near by the crack front.  相似文献   

13.
As a necessary step in the chain of transferability from small specimens to actual structures the numerical evaluations of two crack-growth resistance experiments on the basis of the J-integral and utilising sidegrooved compact specimens of different sizes, tested at room temperature and at 285°C are discussed. The necessary experimental and numerical techniques are presented:
• -The partial unloading technique as applied in the IWM is applicable with high accuracy and reproducability in the relevant temperature range up to operating temperature.
• -The J-evaluation combined with a node shifting and releasing technique as implemented in the IWM-version of ADINA proved to be a powerful and economic tool even for parameter studies.
The results of the experiments and of the numerical evaluations are presented as force-displacement diagrams and as J-integral vs. crack extension curves. The good qualitative and quantitative agreement supports the experimental evaluation of J from the force-displacement diagram and validitates the numerical procedures to be applied and extended to real structues.

References

[1]ASTM E 399-81 Standard test method for plane-strain fracture toughness of metallic materials, Annual Book of ASTM Standards (1981) Part 10, Philadelphia.[2]ASTM E 813-81 Standard test for JIC, a measure of fracture toughness, Annual Book of ASTM Standards (1981) Part 10, Philadelphia.[3]P. Albrecht, W.R. Andrews, J.P. Gudas, J.A. Joyce, F.J. Loss, D.E. McCabe, D.W. Schmidt and W.A. VanDerSluys, Tentative test procedure for determining the plane strain JI-R-curve, Journal of Testing and Evaluation, JTEVA 10 (6) (1982), pp. 245–251. View Record in Scopus | Cited By in Scopus (5)[4]K.J. Bathe, ADINA, a finite element program for automatic dynamic incremental nonlinear analysis, Report 82 448-1 (2nd Ed.), Massachusetts Institute of Technology, Cambridge, Mass., USA (1980).[5]J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968).[6]D.M. Parks, The virtual crack extension method for nonlinear material behavior, Comp. Methods Appl. Mech. Engrg. 12 (1977).[7]H.G. deLorenzi, J-integral and crack growth calculations with the finite element program ADINA, Methodology for plastic fracture, EPRI Report SRD-78-124 (1978).[8]H.G. deLorenzi and C.F. Shih, Fracture parameters in side-grooved specimens, General Electric U.S. Report No. 80 CRD 211 (1980).[9]F.J. Loss, B.H. Menke, R.A. Gray Jr. and J.R. Hawthorne, J-R-curve characterization of irradiated nuclear pressure vessel steels, Proceedings of US. NRC, CSNI Specialist's Meeting on Plastic Tearing Instability St. Louis, Missouri, USA (1979).  相似文献   

14.
The present study deals with crack initiation and crack growth, not only under creep and creep-fatigue conditions but also under more complex thermomechanical cyclic loadings, in both 316L and 1Cr-1Mo-0.25V steel.In these creep ductile materials, most studies have focused on the creep crack growth rates, da/dt and load-geometry parameter C* correlations. In this paper, the creep crack initiation time is defined as the time Ti necessary for a defect to grow by a small critical distance Xc (Xc ≈ 50 μm for example). This initiation stage may represent a large part of the rupture life of a cracked component. The importance of such studies is discussed in the first part.In the second part, an attempt is made to present a simplified method based on the fracture mechanics of creeping solids to define the relevant load-geometry parameters for crack initiation and crack growth under creep-fatigue loadings. In particular, it is shown that da/dNK correlations apply only when the hold time th is smaller than the transition time ttr between small-scale and large-scale viscoplasticity. Conversely, for long hold times, it is suggested that the Ti-C* correlation be used to predict the fatigue.  相似文献   

15.
In modern CANDU nuclear generating stations, pressure tubes of cold-worked Zr---2.5Nb material are used in the reactor core to contain the fuel bundles and the heavy water (D2O) coolant. The pressure tubes operate at an internal pressure of about 10 MPa and temperatures ranging from about 250°C at the inlet to about 310°C at the outlet. Over the expected 30 year lifetime of these tubes they will be subjected to a total fluence of approximately 3 × 1026 n m−2. In addition, these tubes gradually pick up deuterium as a result of a slow corrosion process. When the hydrogen plus deuterium concentration in the tubes exceeds the hydrogen-deuterium solvus, the tubes are susceptible to a crack initiation and propagation process called delayed hydride cracking (DHC). If undetected, such a cracking mechanism could lead to unstable rupture of the pressure tube. A fitness-for-service methodology has been developed which assures that this will not happen. A key element in this methodology is the acquisition of data and understanding—from surveillance and accelerated aging testing—to assess and predict changes in the DHC initiation threshold, the DHC velocity and the fracture toughness (critical crack length) as a function of service time. The most recent results of the DHC and fracture toughness properties of CANDU pressure tubes as a function of time in service are presented and used to suggest procedures for mitigation and life extension of the pressure tubes.  相似文献   

16.
In modern CANDU nuclear generating stations, pressure tubes of cold-worked Zr-2.5Nb material are used in the reactor core to contain the fuel bundles and the heavy water (D2O) coolant. The pressure tubes operate at an internal pressure of 10 MPa and temperatures ranging from 250°C at the inlet to 310°C at the outlet. Over the expected 30 year lifetime of these tubes, they would be subjected to a total fluence of 3×1026 n m−2. In addition, these tubes gradually pick up deuterium as a result of a slow corrosion process. When the hydrogen plus deuterium concentration in the tubes exceeds the hydrogen/deuterium solvus, the tubes are susceptible to a crack initiation and propagation process called delayed hydride cracking (DHC). If undetected, such a cracking mechanism could lead to unstable rupture of the pressure tube. The service life of the pressure tubes is determined, in part, by changes in the probability for the rupture of a tube. This probability is made up of the probability for crack initiation by DHC multiplied by the sum of the probabilities of break-before-leak and leak-before-break (LBB). A probabilistic model, BLOOM, is described which makes it possible to estimate the cumulative probabilities of break-before-leak and LBB. The probability of break-before-leak depends on the crack length at first leak detection and the critical crack length. The probability of a LBB depends on the shut-down scenario used. The probabilistic approach is described in relation to an example of a possible shut-down scenario. Key physical input parameters into this analysis are pressure tube mechanical properties, such as the crack length at first coolant leakage, the DHC velocity and the critical crack length. Since none of these parameters are known precisely, either because they depend on material properties, which vary within and between pressure tubes, and/or because of measurement errors, they are given in terms of their means and standard deviations at the different temperatures and pressures defined by the shut-down scenario.  相似文献   

17.
18.
It is well known that the tearing resistance curve J–Δa is not a material property. A recent approach, based on an energetic critical parameter to model ductile tearing propagation, is used to model 3D effects. The approach considered in this work aims to estimate the dissipated energy in the fracture process during ductile tearing represented by an intrinsic parameter Gfr. A fracture criterion, which accounts for the crack extension length, is defined and lies on a critical energy release rate, noted Gc, which is compared to Gfr. Previously, this parameter was obtained from a numerical local energy release rate, which handicaps the application field of the approach: a fine mesh for the whole propagation area was needed and the criterion allowed only to model 1D propagation. A new manner to estimate Gc is then proposed in this article, based on the J plastic part variation, which allows to model 2D propagation by defining a local criterion. This new calculation method is validated on a CT specimen made in Tu52b ferritic steel, by comparing the results obtained from the two methods of Gc calculation. Then, the 2D crack growth case is studied, by modelling the propagation in a ring, loaded in compression. It is shown that a 3D effect, such as tunnel effect, could be successfully represented with this approach.  相似文献   

19.
This contribution describes a method for the determination of the J-integral as a function of the load-line displacement for arbitrary specimen geometries.A correspondence could be found between the approximation method and the results determining with the Rice integral by means of a FE-calculation. Using the initiation values of the J-integral as a fracture mechanics parameter determined from the JR-curve, correspond with failure values of double-édged notched tensile specimens and circumferentially notched round tensile specimens of which crack initiation was tantamount to instability. Consequently, it could be proved that the J-integral is a transferable parameter that may be ascertained from simple determinable deformation values. The application to real components seems to be promising, due to these good results.  相似文献   

20.
The ductile fracture tests are carried out using compact type (CT) specimen, three point bend specimen and center cracked tension (CCT) specimens made of A533B steel and aluminum alloy with different crack lengths. The effect of the crack tip constraint on the microscopic fracture behavior is studied by the scanning electron microscope (SEM). It is shown that the apparent JIC value increases due to the decrease of the crack tip constraint. It is pointed out that the increase of the apparent JIC value is partly due to the error of the conventional equation to estimate the J value. Based on the FEM analyses, these apparent JIC values are corrected and are compared with the valid JIC values. The good co-relation between apparent JIC value and the Q factor, proposed by O'Dowd and Shih, is shown for all the specimens. The FEM analyses based on the Gurson's constitutive equation is also carried out. The effect of the constraint on the crack tip field is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号