首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
采用熔融共混法制备了聚酮(PK)/聚酰胺66(PA66)共混物,通过扫描电子显微镜、差示扫描量热仪、冲击试验机和电子万能试验机等研究了PK/PA66共混物的形态结构、结晶与力学性能。结果表明,当PA66含量较低时,PA66分散相粒径较小,且分布较均匀,PK/PA66(质量比为80/20)共混物的干态冲击强度达到29.5 kJ/m2,湿态下冲击强度为纯PK的4倍,同时共混物拉伸强度及弯曲模量也明显提高;但当PA66含量较高时,PA66相区尺寸明显增大,PK/PA66共混物的冲击强度呈下降的趋势;PA66的引入会显著降低PK的结晶度。  相似文献   

2.
在聚苯硫醚(PPS)树脂基体中引入聚酰胺66(PA66),随着PA66含量增加,PPS/PA66共混物的拉伸强度和弯曲强度逐渐下降,结合PPS/PA66共混物的相形貌分析,提出了通过玻璃纤维(GF)的引入,制备具有互锁结构的PPS/PA66/GF三元体系复合材料,达到同时提高复合材料的强度、刚度及韧性的目的。分别考察了短玻璃纤维(SGF)和中长玻璃纤维(LGF)增强PPS/PA66的综合性能。结果表明,GF的引入显著提高了共混物的力学性能,同时,PPS/PA66/SGF和PPS/PA66/LGF复合材料的扫描电子显微镜和动态力学性能分析都表明共混物内部形成了一个高度互锁的结构。  相似文献   

3.
以聚苯硫醚(PPS)、聚酰胺6(PA6)为原料,采用共混熔融纺丝法制备出PPS/PA6共混海岛纤维,用甲酸溶解剥离基体相PA6,制得纳米PPS纤维;研究了PPS/PA6共混体系的流变性能以及PPS含量、螺杆转速对共混物及PPS纳米纤维的结构、性能的影响。结果表明:PPS/PA6共混物的纺丝温度为290℃;随着PPS含量增加,共混物中PPS岛相直径增加,分布变宽,PPS质量分数应小于60%;当共混物中PPS质量分数由20%增至55%时,PPS纳米纤维平均直径由104 nm升至150 nm;加工过程中,适当提高螺杆转速有利于PPS纳米纤维直径细化和均匀化,当螺杆转速由20 r/min增至60 r/min时,其平均直径由180 nm降至122nm;PPS与PA6共混后,两种聚合物结晶速率均提高,且得到的PPS纳米纤维结晶度约22%,高于纯PPS纤维的结晶度。  相似文献   

4.
周健辉  孙玲  马跃  廖智 《中国塑料》2019,33(3):32-37
采用熔融共混和注射成型制备了改性耐热聚酰胺66/聚乳酸(PA66/PLA)共混物,经热处理后,探讨了PLA含量对共混物的断口样貌形态、力学性能以及结晶性能的影响。结果表明,PLA与PA66具有一定的相容性,当PLA的含量不超过10 %(质量分数,下同)时,PA66/PLA共混物的拉伸强度在PA66的93 %以上,其断裂伸长率对比PLA得到了倍数级的增长,是PLA断裂伸长率的8.6倍;当PLA的含量不超过20 %时,共混物的结晶性能变好,提升结晶速率,缩短结晶时间,结晶度有所提高;但当PLA的含量超过20 %以后,共混物的拉伸强度则出现了不同程度的降低。  相似文献   

5.
采用熔融共混法制备了聚丙烯(PP)/聚酰胺66(PA66)共混物,研究了聚丙烯接枝马来酸酐(PP-g-MAH)和乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)作为增容剂对PP/PA66共混物力学性能和非等温结晶行为的影响。结果表明:PP-g-MAH提高了共混体系的拉伸强度,加入5份POE-g-MAH能显著提高共混物的断裂伸长率;PA66可起到异相成核作用,使PP的结晶峰温度升高;加入PP-g-MAH进一步提高了PP的结晶峰温度;PA66使PP的结晶活化能增大,增容剂的加入则使共混体系中PP的结晶活化能降低。  相似文献   

6.
通过辐照法将马来酸酐(MAH)基团接枝到聚苯醚(PPE)上,制备了PPE-g-MAH,将其和聚酰胺(PA)66通过熔融共混挤出方法制备了PPE-g-MAH/PA66共混物。采用差示扫描量热、吸水性实验、维卡软化和热变形实验、拉伸和冲击性能测试及动态力学性能测试等对PPE-g-MAH/PA66共混物性能进行了研究。结果表明,与PPE/PA66共混物相比,PPE-g-MAH/PA66共混物的耐热性能、力学性能和吸水性能均得到改善;随PPE-g-MAH含量的增加,PPE-g-MAH/PA66共混物中PA66的熔融温度和玻璃化转变温度均向PPE方向移动,表明两者的相容性有所提升,且共混物的维卡软化温度、热变形温度、25℃之前的储能模量均升高,吸水率降低;当PPE-g-MAH含量较低时,共混物拉伸强度提升明显而冲击强度升幅较小,当PPE-g-MAH含量较高时,共混物冲击强度提升明显而拉伸强度基本不变。因此,可以根据实际的应用要求选择合适的PPE-g-MAH含量。  相似文献   

7.
使用不同原始颗粒尺寸的聚酚氧(PHE)通过双螺杆挤出机分别与尼龙(PA)66共混制备PA66/PHE共混物.测试其力学性能,并用扫描电子显微镜(SEM)表征.研究发现,小颗粒尺寸的PHE制备的PA66/PHE共混物的分散相尺寸小、分散均匀且冲击强度得到提高,呈现协同效应,而拉伸强度基本与纯PA66保持一致;大颗粒尺寸的PHE制备的PA66/PHE共混物的分散相尺寸较大且容易发生团聚,其冲击强度降低,而拉伸强度有所增加.  相似文献   

8.
《塑料科技》2016,(10):34-38
分别以乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯(E-MA-GMA)、苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯(StAN-GMA)以及苯乙烯-(乙烯-丁烯)-苯乙烯嵌段共聚物接枝马来酸酐(SEBS-g-MAH)为相容剂,采用熔融共混的方法制备了改性聚苯硫醚/聚酰胺66(PPS/PA66)共混物。通过毛细管流变分析,研究了PPS及相容剂用量对PPS/PA66共混物流变性能的影响。结果表明:PPS/PA66共混体系为非牛顿假塑性流体,其表观黏度随剪切速率的增大而减小;随着PPS用量的增加,共混体系的非牛顿指数降低,其流变性能逐渐偏离牛顿型流体;随着相容剂用量的增加,PPS/PA66/E-MA-GMA体系的熔体黏度明显增大,PPS/PA66/St-AN-GMA体系的熔体黏度则先下降后上升,而PPS/PA66/SEBS-g-MAH体系的熔体黏度变化不大。  相似文献   

9.
采用原位共混和熔融共混分别制备了尼龙(PA)6/PA6-66-1010共混物。利用傅里叶变换红外光谱仪、差示扫描量热仪、动态热机械分析、力学性能测试和扫描电子显微镜对共混物的内部氢键作用、结晶熔融行为、玻璃化转变温度、力学性能及拉伸断裂形貌进行了表征。结果表明,原位共混物的分子链段的运动性和柔性好于熔融共混物,结晶温度、熔融温度、结晶度均低于熔融共混物,强度和韧性均优于熔融共混物。  相似文献   

10.
研究了增容剂乙烯(E)-丙烯酸酯(MA)-甲基丙烯酸缩水甘油酯(GMA)共聚物(E-MA-GMA)对聚苯硫醚(PPS)/聚酰胺(PA)66共混体系的相容性、力学性能、热性能、流变性能的影响。结果表明,增容剂的加入,增加了共混体系的相容性,提高了共混物的力学性能;DSC结果表明,E-MA-GMA影响共混体系的结晶和熔融行为;流变性能测试结果表明,增容PPS/PA66共混体系是假塑性流体,E-MA-GMA用量增加,使共混体系的表观黏度增大。  相似文献   

11.
The crystalline morphologies of isothermally and nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with polyamide 66 (PA66) were investigated by polarized optical microscopy with a hot stage. The spherulite superstructure of PPS was greatly affected by crystallizable PA66; a Maltese cross was not clear, and the impingement between spherulites disappeared. This could be ascribed to the formation of small crystals of PA66, which filled in the PPS lamellae. The nonisothermal crystallization behavior was also measured by differential scanning calorimetry. The presence of PA66 changed the nonisothermal crystallization process of PPS. The maximum crystallization temperature of the PPS phase in the blend was higher that that of neat PPS, and this indicated that PA66 acted as a nucleus for PPS. Also, the compatibilizer poly(ethylene‐stat‐methacrylate) (EMA) was added to modify the interfacial interplay of the PA66/PPS blend system. The addition of EMA greatly influenced the nonisothermal crystallization process of the PPS phase in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
By adding a small amount of clay into poly(p‐phenylene sulfide) (PPS)/polyamide 66 blends, the morphology was found to change gradually from sea–island into cocontinuity and lamellar supramolecular structure, as increasing of clay content. Clay was selectively located in the PA66 phase, and the exfoliated clay layers formed an edge‐contacted network. The change of morphology is not caused by the change of volume ratio and viscosity ratio but can be well explained by the dynamic interplay of phase separation between PPS and PA66 through preferential adsorption of PA66 onto the clay layers and through layer–layer repulsion. This provides a means of manipulating the phase morphology for the immiscible polymer blends. The mechanical and tribological properties of PPS/PA66 blends with different phase morphologies (different clay contents) were studied. Both tensile and impact strength of the blends were found obviously increased by the addition of clay. The antiwear property was greatly improved for the blends with cocontinuous phase form. Our work indicates that the phase‐separating behavior of polymer blends contained interacting clay can be exploited to create a rich diversity of new structures and useful nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
聚苯硫醚/尼龙6非等温结晶动力学的研究   总被引:2,自引:0,他引:2  
用差示扫描量热仪(DSC)研究了聚苯硫醚(PPS)/尼龙6(PA6)的非等温结晶动力学。结果表明,PPS的结晶温度随降温速率提高而降低,但是纯PPS的结晶温度受降温速率改变的影响要大于PPS/PA6中的PPS的。PPS/PA6中PPS结晶的Ozawa指数(m)比纯PPS的小,结晶速度常数lgKr与结晶温度高低的规律相一致,即结晶温度越高,lgKr值越大。  相似文献   

14.
The non‐isothermal crystallization behaviors of PA56, PA66, and PA56/PA66 blends were studied by differential scanning calorimetry. The Jeziorny and Mo's methods were used to analyze their non‐isothermal crystallization kinetics. The results indicated that Mo's method was better to describe the experimental data in this work. The crystallization rate of PA56 was much slower than that of PA66. The crystallization rate of PA56/PA66 blend was speeded up significantly with the increasing PA66 content when the PA66 content was less than 30 wt %. Further increase in the PA66 content only leads to relatively less increase of the crystallization rate in the PA56/PA66 blends. Activation energies have been determined with Friedman method. The activation energy of PA56/PA66 blends is decreased and lower than that of PA56. PA66 may play a role of nucleating agent toward PA56 to make it crystallize more easily in PA56/PA66 blends. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46409.  相似文献   

15.
用差示扫描量热法(DSC)研究了聚苯硫醚(PPS)/聚酰胺(PA)6共混物熔融多峰行为,PPS及其共混物均出现熔融多峰现象。但共混物呈现更加复杂的熔融行为,虽然退火结晶温度,时间和DSC扫描速率不同,但共混物中PPS的低温熔融峰温明显地比纯PPS的高,认为PA6与PPS间的相互作用促使PPS无定形态的退火结晶完善性提高。熔融多峰现象用重组机理来解释。  相似文献   

16.
In this study, styrene‐b‐ethylene/butylene‐b‐styrene triblock copolymer (SEBS) and maleic anhydride grafted SEBS (SEBS‐g‐MA) were used as compatibilizers for the blends of polyphenylene sulfide/nylon 66 (PPS/PA66). The mechanical properties, including impact and tensile properties and morphology of the blends, were investigated by mechanical properties measurements and scanning electron microscopy. Impact measurements indicated that the impact strength of the blends increases slowly with elastomer (SEBS and SEBS‐g‐MA) content upto 20 wt %; thereafter, it increases sharply with increasing elastomer content. The impact energy of the elastomer‐compatibilized PPS/PA66 blends exceeded that of pure nylon 66, implying that the nylon 66 can be further toughened by the incorporation of brittle PPS minor phase in the presence of SEBS or SEBS‐g‐MA. The compatibilization efficiency of SEBS‐g‐MA for nylon‐rich PPS/PA66 was found to be higher than SEBS due to the in situ forming SEBS interphase between PPS and nylon 66. The correlation between the impact property and morphology of the SEBS‐g‐MA compatibilized PPS/PA66 blends is discussed. The excellent impact strength of the nylon‐rich blends resulted from shield yielding of the matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
In this article, a terpolymer of ethylene, maleic anhydride, and glycidyl methacrylate (EMG) was used to enhance the compatibilization between poly(phenylene sulfide) (PPS) and polyamide‐66 (PA66). The mechanical properties, morphology, crystalline and melting behavior, and rheology of blends were discussed. The results showed that EMG was a good compatibilizer for PPS and PA66 through chemical reaction with them. The new generated polymer could prevent the aggregation of dispersed particles and reinforce the interface bonding. In addition, it could not only act as a nucleating agent for PA66 to refine its spherulites and improve its crystallinity but also promote the apparent viscosity of blends and enhance the non‐Newtonian behavior. The results will be useful to make high performance PPS/PA66 alloy with low cost and enlarge the application scope of PPS and PA66 resin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The nonisothermal crystallization and melting behavior of a poly(phenylene sulfide) (PPS) blend with polyamide 6 (PA6) were investigated by differential scanning calorimetry. The results indicate that the crystallization parameters for PPS become modified to a greater extent than those for PA6 in the blends. The PPS and PA6 crystallize at high temperature as a result of blending. The crystallization temperatures of PPS in its blends are always higher than that of pure PPS and are independent of the melting temperature and the residence time at that temperature. The PPS crystallization peak becomes narrower and the crystallization temperature shifts to a higher temperature, suggesting a faster rate of crystallization as a result of blending with PA6. This enhancement in the nucleation of PPS could be attributed to the possible presence of interfacial interactions between the component polymers to induce heterogeneous nucleation. On the other hand, the increase in the crystallization temperature of PA6 can be attributed to the heterogeneous nucleation provided by the already crystallized PPS. The heterogeneous nucleation induced by interfacial interactions depends on the temperature at which the polymers remain in the molten state and on the storage time at this temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3033–3039, 1999  相似文献   

19.
聚苯硫醚反应性共混体系的增韧研究   总被引:1,自引:0,他引:1  
通过尼龙66(PA66)与环氧树脂、聚乙烯接枝马来酸酐(PE-g-MA)与环氧树脂类弹性体(E)的反应挤出,分别获得了具有微交联界面结构的PPS/PA66/环氧树脂共混体系和PPS/PE-g-MA/E共混体系,对共混物的损耗因数、力学性能及冲击断面形貌进行了研究。实验表明,因界面反应而产生的微交联结构提高了共混体系的相容性,可使体系的缺口冲击强度提高3倍;同时高活性的反应基团还可提供基体与纤维的界面黏结,使共混体系的强度得到提高,并使体系的耐热性得以保持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号