首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
阻燃剂对玻纤增强尼龙66性能的影响   总被引:2,自引:2,他引:2  
比较和分析了不同类型阻燃剂对玻纤增强尼龙(PA)66性能的影响。结果表明,在PA常用阻燃剂卤化物,红磷和氮化物中,红磷是帛得具有良好力学性能,电性能的阻燃增强PA66的最佳阻燃剂:溴化物阻燃的玻纤增强PA66也具有良好的综合性能;氮化物需加入较多的用量才能获得同样的阻燃效果;采用氮-磷或溴-磷复合阻燃体系可提高阻燃效果,减少阻燃剂总用量,从而保持玻纤增强PA66较高的力学性能,使其有更优异的使用性能。  相似文献   

2.
阻燃玻纤增强尼龙66的研制及其应用   总被引:3,自引:3,他引:0  
研究红磷阻燃母粒对玻纤增强尼龙66(PA66)阻燃性能的影响。结果表明,当红磷阻燃母粒的用量为14份时,玻纤增强PA66的阻燃等级可达到FV-0级;当红磷阻燃母粒的用量为12份并加入9份增容剂及少量氢氧化铝和氢氧化镁时,玻纤增强PA66具有较优异的综合性能,用该材料制作的空调继电器外壳和底板取得较好的使用效果。  相似文献   

3.
采用溴化聚苯乙烯(BPS)作为阻燃剂,短玻纤和玻璃微珠作为增强体系,与尼龙66(PA66)共混,经双螺杆挤出机挤出,制备了高表面质量、力学性能优良的阻燃增强PA66复合材料.研究结果表明,添加19份BPS后,PA66可以达到V-0级别的阻燃效果.使用0.8份硅酮润滑剂对PA66的表面质量有一定改善,并且对力学性能影响很小.将玻璃微珠与短玻纤复配,一定程度上可以改善PA66的表面质量,但玻璃微珠对PA66力学性能有不利影响,因此用量不能太大,控制在5份以内.  相似文献   

4.
王爱民  刘云飞  罗道友  郝炜 《塑料》2004,33(6):37-40
为克服红磷直接应用于玻纤增强尼龙66中的缺点,研究了用原位聚合法制备微胶囊红磷的工艺,测试了样品的吸湿性以及表面包覆性能,并研究了其用于玻纤增强尼龙66的阻燃性能和力学性能。结果表明,制得的微胶囊化红磷应用于玻纤增强尼龙66中,不仅具有优良的阻燃性能(FV 0级),而且力学性能比单独应用红磷有所提高,加工工艺性能有较大幅度的提高。  相似文献   

5.
氢氧化镁包覆红磷阻燃玻纤增强PA66的性能研究   总被引:1,自引:0,他引:1  
制备了氢氧化镁[Mg(OH)2]包覆红磷(Mg-en-P),并将其应用于玻纤(GF)增强PA66的阻燃。当Mg-en-P用量为30份时,其阻燃PA66/GF(质量比100/35)材料可达V-0级,氧指数(LOI)为36.5%,其值比商品化红磷母粒(Com-en-P)阻燃PA66/GF高出7.5%,且燃烧时间较短。Mg-en-P阻燃PA66/GF材料的弯曲强度及耐漏电起痕指数(CTI)值均高于Com-en-P阻燃PA66/GF材料,而冲击强度略有降低。Mg-en-P阻燃PA66/GF材料在较低温度下失重,表明Mg(OH)2分解生成的水有助于红磷生成强脱水的聚偏磷酸,起到阻燃作用。  相似文献   

6.
采用熔融共混法制备了尼龙(PA6、 PA66)/红磷母粒/玻纤/偏硼酸钡复合材料。通过力学性能测试、 UL94垂直燃烧法、灼热丝试验、氧指数(LOI)等研究了偏硼酸钡对复合材料力学性能和阻燃性能的影响。力学性能测试结果表明,加入偏硼酸钡不影响复合材料的强度,但会降低缺口冲击强度;阻燃测试结果表明,偏硼酸钡在红磷阻燃尼龙中有良好的协效作用,可使复合材料阻燃性能达到UL94 V-0 (1.6 mm)等级,且灼热丝起燃温度(GWIT)可达750℃;氧指数测试结果表明,加入偏硼酸钡能有效提高复合材料的氧指数。  相似文献   

7.
无卤阻燃增强PA66的研制及其应用   总被引:3,自引:1,他引:2  
以包覆红磷和三聚氰胺氰尿酸(MCA)作为协效阻燃剂,玻璃纤维作为增强体系,加入增容剂和其它添加剂,制备了一种无卤阻燃增强尼龙(PA)66材料.从阻燃性能、热性能、力学性能等方面表征两种阻燃剂的协效作用;探讨了增容剂的加入对复合体系性能的影响.结果表明,当PA66增强料、包覆红磷、MCA、增容剂的质量比为100∶15∶5∶6时,复合材料具有较好的阻燃性能和力学性能.该材料已广泛应用于电子、电器领域.  相似文献   

8.
采用聚苯醚(PPE)与红磷母粒(MRP)复配阻燃,并使用玻璃纤维进行增强,制备了无卤阻燃玻纤增强尼龙46(PA46)复合材料。研究了不同配比PPE/MRP及其用量对阻燃玻纤增强PA46复合材料性能的影响。结果表明,当PPE/MRP质量分数为12%且质量比=1/1时,能够在添加较少量的MRP的情况下得到较好的阻燃效果,达到UL94 V-0级(1.6 mm)。热失重分析(TG)表明材料的残炭率与其阻燃性能有很好的对应关系;残炭率低的试样,其阻燃性能也低,只达到V-1级;而残炭率高的试样,阻燃性能可达到V-0级。随着PPE添加量的逐渐增加,玻纤增强阻燃PA46的各项力学性能都有不同程度的提高;当PPE和MRP质量分数均为6%时,玻纤增强阻燃PA46垂直燃烧后形成的炭层平整性和致密性都较好,炭层表面孔隙较少,起到较好的阻燃效果,试样的力学性能和热变形温度都达到最佳,起到了很好的协同效应。  相似文献   

9.
无卤阻燃增强PA66的研制及其在断路器外壳中的应用   总被引:4,自引:3,他引:1  
采用红磷母粒阻燃玻璃纤维增强聚酰胺66(PA66),并添加适当的添加剂,制备了无卤阻燃增强PA66;考察了阻燃剂、增容剂及其它助剂对材料性能的影响。结果表明,该材料具有较高的力学性能、电绝缘性能和阻燃性能;用该材料制备的断路器外壳具有较好的阻燃性能及电绝缘性能,产品质量得到了客户认可。  相似文献   

10.
通过双螺杆挤出机熔融共混制备玻纤增强尼龙66(PA66)材料,研究了环境湿度、吸水率、成核剂对玻纤增强PA66材料尺寸稳定性的影响。结果表明:环境湿度越高、时间越长,玻纤增强PA66材料尺寸变得越大,且在垂直流动方向上的材料尺寸变化大于流动方向上的;环境湿度越低达到相同吸水率的时间越长,吸湿溶胀作用越明显,玻纤增强PA66材料尺寸变化越大;随着成核剂含量增加,玻纤增强PA66材料尺寸稍微变小,成核剂用量为0.50份时达到最小值,再增加其用量材料尺寸基本不变化。  相似文献   

11.
以十溴二苯醚和氮磷复合物为阻燃剂,以玻璃纤维为增强剂,加入自制增韧剂,制备了阻燃增强增韧尼龙(PA)66材料,并对其阻燃性能和力学性能进行了表征,研究了加工工艺对改性PA66材料性能的影响。  相似文献   

12.
高效膨胀性阻燃剂阻燃玻纤增强尼龙6的研究   总被引:4,自引:0,他引:4  
以合成高聚合度的聚磷酸蜜胺为主阻燃剂,以自制的阻燃剂F为协同阻燃剂,复配成新型无卤膨胀性阻燃剂ANTI-9。研究了不同摩尔比的蜜胺/磷酸合成的聚磷酸蜜胺对玻纤增强尼龙(PA)6阻燃性能的影响,考察了ANTI-9对玻纤增强PA6的阻燃性能、力学性能的影响。结果表明,当蜜胺/磷酸的摩尔比为1.2时合成的聚磷酸蜜胺的阻燃性能最好,且产率和耐水性也比较好。在玻纤增强PA6中添加25%~30%的ANTI-9时,其阻燃性能可以达到UL94V-0级,且阻燃玻纤增强PA6的综合性能达到国外同类产品的指标。  相似文献   

13.
研究了聚溴化苯乙烯(PBS)对玻纤增强尼龙6(PA6/GF)阻燃和力学性能的影响,并采用锥形量热仪研究了改性水滑石(HT)对PBS/Sb2O3阻燃PA6/GF抑烟作用和燃烧时热释放速率的影响。结果表明,随PBS用量增加,PA6/GF的氧指数增加,阻燃性提高,当PBS质量分数为20%时,PA6/GF的垂直燃烧达到FV-0级;HT燃烧后形成多孔、大比表面积的镁铝复合氧化物,能够有效吸附材料燃烧过程中产生的炭微粒,对PBS/Sb2O3阻燃PA6/GF具有显著的抑烟作用。当HT质量分数为5%时,烟释放速率降低27.6%,且对阻燃PA6/GF的力学性能影响不大。另外,HT使PA6/GF的氧指数和相比漏电起痕指数(CTI)提高。  相似文献   

14.
玻纤增强阻燃PTT工程塑料的研制及应用   总被引:1,自引:0,他引:1  
研制了一种30%玻纤增强阻燃聚对苯二甲酸丙二酯(PTT)工程塑料,重点考察了增韧剂、结晶成核剂、其它聚酯及溴锑复合阻燃剂对PTT性能的影响。结果发现,在PTT中添加适当的结晶成核剂、增韧剂及其它聚酯,不但使PTT材料的加工流动性得到改善,综合性能大幅提高,还可以提高其结晶度,加快结晶速率,促进制品定型,缩短生产周期;添加12份溴(锑)复合阻燃剂可以使PTT的阻燃级别达到FV-0级。  相似文献   

15.
采用自制的无卤阻燃剂(IFR)对30%玻纤增强尼龙6复合材料进行阻燃改性,研究了IFR的不同加入量对复合材料阻燃性能、力学性能以及热性能的影响。结果表明:当IFR加入量为25%时.阻燃复合材料的极限氧指数(LOI)达到31,阻燃级别为V-0级,而拉伸强度为78.86MPa,冲击强度为5.06kJ/m^2,材料综合性能比较优异。热重分析(TGA)数据表明,IFR的加入,改变了复合材料的热分解行为,改善了成炭效果。  相似文献   

16.
一种三嗪阻燃剂对玻纤增强PET体系性能的影响   总被引:1,自引:0,他引:1  
比较了新型阻燃剂无析出阻燃剂A和十溴联苯醚对玻纤增强聚对苯二甲酸乙二醇酯(PET)体系的阻燃和力学性能的影响以及阻燃剂在体系中的抗析出性能。结果表明,两种阻燃剂对体系性能的贡献几乎一样,但无析出阻燃剂A具有良好的抗析出性。借助扫描电镜(SEM)对体系的微观结构的分析发现无析出阻燃剂A在PET基体中分散均匀,颗粒尺寸小而一致。在不同工程塑料中加入无析出阻燃剂A后发现,PET体系的阻燃性能明显高于而力学性能则大大低于PBT和尼龙体系,这在很大程度上是由于无析出阻燃剂A体系使PET树脂摩尔质量降低所致。此外,还讨论了玻纤对十溴联苯醚阻燃PET的影响。适当提高玻纤的加入量,不仅可以提高体系的力学性能,还可以改善其阻燃性能。  相似文献   

17.
通过熔融共混工艺,利用双螺杆挤出机制备了聚对苯二甲酸乙二酯(PET)/玻璃纤维(GF)/溴化环氧树脂共混体系,研究了各组分对共混体系力学性能和阻燃性能的影响。结果表明,GF含量的增加不仅可以全面提高共混体系的力学性能,而且可以提高共混体系的阻燃性能;随着阻燃剂溴化环氧树脂含量的增加,共混体系的阻燃性能显著改善,但力学性能稍有下降。  相似文献   

18.
玻纤增强阻燃PET的研制   总被引:5,自引:2,他引:3  
研制了一种玻纤增强阻燃聚对苯二甲酸乙二酯(PET),着重考察了滑石粉、苯甲酸钠、Na2CO3、硬脂酸镁、ZnO及自制的几种结晶成核剂对材料力学性能和熔体流动速率的影响。结果表明,在没有加入结晶成核剂的情况下,单独加入玻纤对PET的增强增韧效果并不明显;适当的结晶成核剂能明显提高玻纤增强PET的力学性能,并改善其熔体流动性,促进PET制品定型,缩短生产周期;添加12份十溴二苯醚/Sb2O3复合阻燃剂,可使玻纤增强PET的阻燃性能达到UL94 V-0级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号