首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《计算机工程》2018,(2):264-270
传统压缩跟踪算法使用固定学习率更新特征分布,导致跟踪易受遮挡影响且鲁棒性较低。为此,提出一种可自动调节特征分布学习率的压缩跟踪算法。利用压缩感知理论得到样本的压缩域特征并计算其在正负类中的特征分布,结合两帧之间特征分布重叠度和正类更新阈值自适应更新特征分布,通过样本分类实现目标跟踪。在此基础上,利用相邻两帧目标改进的SIFT特征求解目标尺度变化,使跟踪窗口随目标变化实时更新。实验结果表明,该算法可有效抵抗遮挡、光线、尺度等因素对跟踪的干扰,具有较高的准确性、鲁棒性以及实时性。  相似文献   

2.
The interacting multiple model based on a particle filter fails to meet the requirements of real‐time performance when manoeuvring target tracking by radar due to deficiencies in its high calculation complexity. An improved particle filter based on landscape adaptive particle swarm optimization is proposed. This filter adopts the method of updating inertia weight, using not only local information and global information, but also preventing algorithm trapping in a local optimum, so the filter can find the optimal solution with less iteration. Additionally, an improved tracking model is presented. With the help of systematic resampling, the model can figure out the model index of particles. The experimental results prove that the new tracking algorithm not only improves manoeuvring target tracking accuracy, but also decreases computing complexity.  相似文献   

3.
基于自适应压缩特征选择的实时目标跟踪算法?   总被引:1,自引:0,他引:1  
针对压缩感知算法中的低维特征对目标重构效果较差的问题,提出基于自适应压缩特征选择的目标跟踪算法。该算法首先提取满足目标重构要求的高维压缩特征,再通过所提出的特征选择方法选择区分度高的低维特征作为目标的外观模型,从而降低计算复杂度。为自适应选择特征,采用一种差分方法控制特征维数,满足实时性要求。实验表明,与其他算法相比,文中算法具有更强的鲁棒性和实时性。  相似文献   

4.
为提高C-SVM的泛化性能,提出一种基于特征分组的多核融合在线自适应识别算法.此算法首先把特征按照待识别样本集的特性分为若干组,然后根据各组特征的特性采用不同的核函数训练C-SVM模型,并分别把各个模型支持向量间的相似度作为其权重系数,通过自适应样本不断调整权重系数和模型参数,使得C-SVM模型的参数能够随着待识别样本特性的变化而自适应地变化.将此算法应用于非特定人语音情感识别系统,与RBF核、多项式核和Sigmoid核的对比证明了多核融合在线自适应识别算法的优越性,通过与中性语句归一化方法相比证明了本文算法的有效性和稳定性.  相似文献   

5.
该文提出了一种基于材质特征的视觉跟踪算法.该算法利用背景差分法将需跟踪的样本从静止背景中提取出来,然后在在HIS色彩空间内,以样本像素的H、I、S分量为坐标,得到离散空间曲面∑0,经平滑处理,得到局部连续曲面∑1.对跟踪视频序列每一帧的每一像素计算其S分量到达曲面∑1的最近距离,从而判断该像素是否属于要跟踪的样本材质.根据所有属于该材质的像素点的空间坐标,可计算出样本出现的范围.实验证明该方法简单、有效.解决了视频跟踪中根据材质进行跟踪的问题.  相似文献   

6.
针对传统CAMshift跟踪算法在复杂环境中跟踪效果不理想的问题,论文提出融入基于纹理特征的SURF算法与改进CAMshift算法形成多特征融合跟踪算法。通过基于色调分量H和饱和度分量S联合生成目标直方图模板,利用完整的目标颜色信息特征增强算法对复杂环境的适应能力。为进一步提高算法的鲁棒性,利用SURF算法实现跟踪目标的重定位,克服了复杂环境下丢失目标后跟踪问题。实验证明,论文提出的多特征融合算法在保持理想的鲁棒性和准确性的同时,也提高了跟踪的实时性。  相似文献   

7.
一种基于纹理和颜色的目标跟踪方法   总被引:4,自引:0,他引:4  
研究视频物体识别系统,传统连续自适应均值偏移(Camshift)跟踪方法根据H分量建立被跟踪目标的颜色模型,而H分量易受亮度(V分量)的影响,造成不能准确跟踪运动目标.为解决上述问题,引入运动目标的纹理特征,先提取HSV颜色空间的H分量,把它转化为局部二元纹理(LBP)图,计算目标的LBP纹理直方图并把反向投影到LBP纹理图上,得到LBP纹理概率图,然后采用Camshift算法确定当前图像中目标的尺寸和中心位置.对手势和人脸跟踪进行仿真计算,实验结果表明,在跟踪过程中可以对目标进行稳定的实时跟踪,通过计算,也改善了传统方法,使识别人脸不受光照的影响,验证了改进方法的有效性.  相似文献   

8.
针对连铸板坯边缘实时跟踪测量问题,在分析运动物体直线边缘特征参数的基础上,建立了直线边缘相似性融合模型,使得板坯边缘的特征匹配具有较强的自适应能力,并讨论了检测窗口的设置和摄像机的切换策略,在实际应用中取得了满意的效果。  相似文献   

9.
提出自适应特征选择算法,利用背景信息及目标信息建立特征分类器,并在跟踪过程中不断更新特征分类器;提出采用光流算法对运动区域进行粗预测,然后利用特征分类器及meansh ift算法对目标进行跟踪.实验结果表明,该算法可以根据不同的背景信息自适应的选择特征 ,对于跟踪过程中存在形变、遮挡以及背景出现干扰或光照变化等情况,依然可以对目标进行稳定的实时跟踪.  相似文献   

10.
基于光流法的视频人脸特征点跟踪方法   总被引:1,自引:0,他引:1  
提出一种人脸特征点跟踪方法。首先,运用ASM获取人脸的特征点,然后在选用Lucas-Kanade光流算法的基础上,将初始帧和当前帧的前一帧有机结合起来,共同作为当前帧的参考来进行特征点跟踪。实验结果表明该方法对特征点的跟踪有很好的效果。  相似文献   

11.
为解决LCT算法在目标形变与快速移动情况下跟踪效果差的问题,提出一种基于特征融合的跟踪算法。在梯度方向直方图特征相关滤波的基础上,提取目标与背景颜色直方图特征,得到颜色特征的目标预测位置。在此基础上,根据跟踪置信度确定特征融合权重,综合考虑梯度特征与颜色特征得到跟踪结果。实验结果证明,与LCT算法相比,该算法的距离精度和重叠精度分别提高了11.5%和21.2%,平均中心位置误差减少了15.3像素。  相似文献   

12.
基于核相关滤波器的跟踪算法对于目标的空间结构具有较强的依赖性,无法有效应对遮挡、形变等干扰因素,且单一的特征模型在复杂的跟踪场景下无法准确表述目标信息。为此,提出一种基于自适应多模型联合的算法。通过自适应权重将相关滤波模型与颜色直方图模型进行联合,并将稀疏表示的思想引入相关滤波模型的训练过程中,以增强算法的鲁棒性。OTB视频序列数据集上的实验结果表明,该算法可有效缓解跟踪过程中的遮挡、形变等因素的干扰,与Staple算法、KCF算法相比,目标跟踪的精度显著提升。  相似文献   

13.
基于自适应参考模板的相关跟踪算法   总被引:3,自引:0,他引:3  
目前相关跟踪技术在目标识别领域中应用非常广泛。论文提出了一种基于自适应参考模板的相关跟踪算法,该方法可以根据目标的变化情况自动调整参考模板,对目标进行稳定跟踪,尤其适用于复杂背景条件下的连续帧图像的跟踪。  相似文献   

14.
《计算机科学与探索》2016,(7):1010-1020
针对视觉跟踪在复杂场景中跟踪精度较低和鲁棒性较差的问题,在贝叶斯框架下提出了一种自适应观测权重的目标跟踪算法。通过视觉跟踪中的线性表示模型构建出一种加权观测模型;提出一种基于迭代加权的模型优化算法,利用在线更新的自适应权重矩阵消除观测离群值对跟踪有效性的影响;最后,采用有效的似然评估函数实现对目标准确、鲁棒的跟踪。实验结果表明,该算法在跟踪精度和鲁棒性方面都优于现有的一些跟踪算法。  相似文献   

15.
针对卡尔曼滤波对匀速运动目标能有效的跟踪,但是当目标出现转弯时,很难达到跟踪精度的要求,甚至丢失目标的现象.对卡尔曼滤波算法进行了改进,在观测向量中引入了两个加速度误差变量,它们动态地修正状态估计误差从而减少跟踪精度误差,形成了修正的Kalman算法.但是由于状态变量维数增加,使得计算量增加,实时性下降,将卡尔曼滤波算法与修正的卡尔曼滤波算法两种算法相结合,提出了基于修正的卡尔曼滤波自适应跟踪算法.仿真结果表明,具有良好的稳定性和精确度,优于一般的卡尔曼滤波算法.  相似文献   

16.
《计算机工程》2019,(11):269-274
目前多数跟踪算法采用尺度遍历穷搜索策略应对目标的尺度变化,其跟踪性能和效率不佳。针对此问题,基于特定目标提议框提出一种自适应跟踪算法。对目标提议框生成算法进行改进,融入跟踪目标的尺度和位置信息,得到特定目标提议框并获取其特征。为确保跟踪的连续性,将自适应支持向量机作为跟踪模型,对特定目标提议框进行评分,得到目标位置。对均匀采样样本和特定目标提议框正负样本分类,进行模型更新。在OTB100数据库上进行对比实验,结果表明,与CNN-SVM、DeepSRDCF等算法相比,该算法能较好地适应目标的尺度变化和形变,有效提高跟踪效率。  相似文献   

17.
基于自适应粒子滤波的跳水运动视频跟踪算法   总被引:1,自引:0,他引:1  
用传统粒子滤波算法对跳水运动视频跟踪存在两个突出问题:观测模型不能适应运动员身体的表观变化;运动模型不能准确预测运动员位置的快速改变。针对这两个问题,本文提出一种自适应粒子滤波算法。该算法在粒子滤波框架下引入一种自适应观测模型,并且根据跟踪误差与运动员动作改变幅度的大小,自适应选择噪声方差和粒子数量。实验结果表明,本文算法比传统粒子滤波算法具有更低的跟踪误差率,而且在运动员动作改变幅度变大时有更好的鲁棒性。  相似文献   

18.
《机器人》2015,(6)
针对动态背景下视觉跟踪存在的错误率大、鲁棒性不强以及多目相机信息融合难等问题,提出一种基于双目匹配的视觉跟踪算法.结合双目相机的物理结构特点,该算法以四边形闭环方法对特征点进行匹配,实现特征点的双目匹配和立体跟踪,并优化匹配的搜索结构.算法首先采用高斯-拉普拉斯模板对图像进行滤波,利用Harris角点检测算法提取特征点并依次构造描述子序列,然后以绝对误差和作为匹配代价的衡量准则,建立四边搜索准则进行邻近搜索,同时引入RANSAC(随机采样一致性)算法进行可靠性筛选,最终通过4点构成的四边形闭环检测实现了特征点跟踪精度的改进.通过对不同分辨率、不同路况图像集进行测试实验,所提出的四边形跟踪算法特征跟踪正确率可达99.80%,鲁棒性和精度均优于光流法.  相似文献   

19.
本文在改进的尺度不变特征转换(Scale-invariant feature transform,SIFT)特征匹配算法的基础上,提出了一种基于特征集的多目标跟踪算法。通过设置目标特征留存优先级,更新特征集,保存近几帧的稳定特征,保证特征的稳定,提高了匹配准确度。试验结果表明该算法对目标由于旋转、形变导致的跟踪性能下降具有较好的容错性,也具有较好的鲁棒性。  相似文献   

20.
目标追踪是近年来视觉领域的一个研究难题,其核心任务是在视频序列中持续定位目标并使用边界框标注其位置.已有的追踪方法大多采用目标检测的思路,将视频序列按帧分开对目标进行单独检测.这种策略尽管充分利用了当前帧信息,却忽略了帧与帧之间的时空关联信息,而这些信息是适应目标外观变化并完整检测目标的关键.为解决这一问题,提出了时空...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号