首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
Fluorescence decay curves of the ^3P0 and ^1D2 manifolds in Pr^3+ doped PbWO4 crystal were measured at room temperature and fluorescence lifetimes of both manifolds were estimated. Combining with the radiative lifetimes of the manifolds calculated on the basis of the modified J-O theory, the main mechanisms for the fluorescence quenching of the manifolds were analyzed. The multi-phonon relaxation and the cross-relaxation energy transfer are the major reasons for the fluorescence quenching of the ^3P0 and ^1D2 manifolds, respectively. The Inokuti-Hirayama model was used to analyze the fluorescence decay curve of the ^1D2 manifold and the cross-relaxation of dlpole-dipole interaction was confirmed. Consequently, the ^3p0 manifold is more favorable as an upper laser level than the ^1D2 manifold.  相似文献   

2.
Luminescence of Er^3+ in Oxyfluoride Transparent Glass-Ceramics   总被引:1,自引:0,他引:1  
Erbium doped silicate, germanate, and tellurium-germanate oxyfluoride glasses were prepared in a bulk form. Through appropriate heat treatment of the as-prepared glasses, transparent glass-ceramics (TGCs) were obtained with the formation of β-PbF2∶Er3 nanocrystals in the glass matrix were confirmed by X-ray diffraction. Well-defined diffraction peaks were observed in the samples after heat-treatment. The average crystal diameter of these precipitated crystals from full-width at half-maximum (FWHM) of the diffraction peak was estimated to be between 8 and 13 nm. Optical absorption, photoluminescence, and upconversion luminescence were measured on as-prepared glass and glass-ceramics. Luminescence spectra in the TGC samples revealed well-resolved, sharp stark-splitting peaks, which indicates that a majority of Er3 ions has been incorporated into the crystalline phase of the nanocrystals. The intensity of the visible and near infrared luminescence mostly increases in TSG compared to that in the as-prepared glass. In 1.53 μm absorption and emission bands, the maximum absorption peak is blue-shifted from 1531 to 1507 nm, whereas the maximum emission peak is red-shifted from 1535 to 1543 nm in TGC, as compared with that in glass. The bandwidth at half-maximum (BWHM) of the emission band is significantly broader in TGC than in glass, which is beneficial to the erbium-doped fiber amplifier (EDFA). Upconversion luminescence was measured using 800 nm near-infrared light excitation. Drastically increased upconversion luminescence was observed from the TGC as compared to that from their corresponding as-prepared glasses. In addition to a strong green emission centered at 545 nm because of 4S3/2→4I15/2 transition and a weaker red emission centered at 662 nm because of 4F9/2→4I15/2 transition, generally seen from the Er3 doped glasses, two violet emissions centered at 410 nm because of 2H9/2→4I15/2 transition and centered at 379 nm because of 4G11/2→4I15/2 transition were also observed from the TGC. The increased luminescence was attributed to the decreased effective phonon energy and the increased energy transfer between the excited ions when Er3 ions were incorporated into the precipitated β-PbF2 nanocrystals. The results indicated two attractive spectroscopic properties of the Er3 doped TGC samples, compared to glass samples, namely a reduced multiphonon decay rate and a reduced inhomogeneous broadening. In addition, these oxyfluoride TGC materials were robust, easy and flexibile to process, and possible to be fabricated in the fiber form for device applications.  相似文献   

3.
The upconversion fluorescence of Er^3+ ions in LiKGdF5 : Er^3+, Dy^3+ single crystal was studied under 785, 514.5, and 980 nm laser excitation. With the laser excitation set at 785 nm, strong green (centered at 543 nm) upconversion emissions, as well as weak red (651 nm), violet (406 nm), and blue (470 nm) upconversion emissions were obtained. With 514.5 nm laser excitation, violet (406 nm) and blue (470 nm) upconversion emissions were observed. Under 980 nm laser excitation, strong green (543 nm) and weak red (651) emissions were also obtained. The laser power dependence of the upconverted emissions was investigated to understand the upconversion mechanism. The excited state absorption (ESA) and the energy transfer (ET) processes were discussed as the possible mechanisms for all upconversion emissions.  相似文献   

4.
5.
The vacuum ultraviolet (VUV) luminescent properties of Pr^3+ -activated LaB3O6 were investigated with highenergetic synchrotron radiation from 20 to 300 K. In the emission spectra, the parity-forbidden 4f^2→4f^2 and parity-allowed 4f5d→4f^2 transitions were observed simultaneously. In addition, it was also observed that the intensity of 4f5d→4f^2 emission bands increased relative to the intensity of 4f^2→4f^2 emissions with increasing temperature. The thermal equilibrium model of energy levels was employed with respect to the lowest 4f5d state and ^1S0 state of LaB3O6:Pr^3+ , as a result of which the fitted curve had a good agreement with the experiment values, which clarified the physical nature of temperature-dependent emission characteristics of Pr^3+ in LaB3O6.  相似文献   

6.
Novel Er3 -doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were found to be Ω2=3.27×10-20 cm2, Ω4=1.15×10-20 cm2, and Ω6=0.38×10-20 cm2. The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log Iup vs log IIR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.  相似文献   

7.
Er^3+ :Y0.5Gd0.5VO4 crystal with good optical quality was grown by Czochraski method. The structure of the crystal was determined by X-ray powder diffraction method. The segregation coefficient of Er^3 + ions in the crystal was measured by the ICP method. The absorption and emission spectra were also measured. On the basis of the spectra, the absorption cross-sections, emission spectrum FWHM and fluorescence lifetime of the crystal were calculated. From the properties mentioned above.  相似文献   

8.
Crystals of LiKGdF5:Er^3 , Tb^3 grown by the hydrothermal synthesis technique with concentrations of 2% and 0.4% were analysed. By using site selective excitation measured at low temperature, luminescence and excitation spectra from Er^3 and Tb^3 ions embedded in LiKGdF5 were clearly separated. The lifetimes of the emitting levels ^4S3/2 of Er^3 and ^5D4 of Tb^3 were also determined. Following the site selective spectroscopy study, the dominant energy transfer process from Tb^3 to Er^3 in the crystal was then investigated via transient experiments.  相似文献   

9.
Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determined by DTA and optical coupler, respectively. The average background loss of tellurite glass fiber was 1.8 dB/m at 1310 nm. Optical microscopy and field emission scanning electron microscope (FESEM) were used to study structural characteristics of preforms and optical fibers. The main loss of tellurite glass fiber could be attributed to scatter centre due to core-cladding interface defects. The amplifier performance of tellurite glass fiber was investigated by pumping with 980 nm laser diode (LD). The gain coefficient and maximum signal gain were 0.21 dB/mW and 10 dB, respectively, for a pumping power of 120 mW. Gains exceeding 5 dB were obtained over 30 nm bandwidth from 1535 to 1565 nm. The minimum noise figure was 4.8 dB at 1557 nm.  相似文献   

10.
The photoluminescence properties of BiTaO4:Pr^3 and BiTaO4 at room temperature were studied, and the infrared transmission and diffusion reflection spectra of BiTaO4 were measured. The photoluminescence spectrum of BiTaO4 peaks at about 420, 440 and 465nm. There has an obvious excitation band from 330 to 370nm. The photoluminescence spectrum of BiTaO4:Pr^3 consists of the characteristic emission of Pr^3 , and its main peak is at 606 nm from ^3P0→^3H6 transition of Pr^3 . Its excitation spectrum consists of the wide band with maximum at 325nm, the wide band in the range of 375-430nm, and the characteristic excitation of Pr^3 .The bands at 325nm and 375-430nm may be from the absorption of the charge transfer transition of the tantalate group and defect energy levels in its forbidden band, respectively.There is energy transfer from host to Pr^3 . Because both the host density and photoluminescence peak intensity of BiTaO4:Pr^3 are superior to PbWO4, BiTaO4:Pr^3 may be a potential heavy scintillator.  相似文献   

11.
A study of energy transfer of Er3+/Nd3+ codoped tellurite glasses was presented. By Nd3+ co-doping, both the Er3+ green emission corresponding to the Er3+: (4S3/2,2H11/2)→4I15/2 transitions and the red emission corresponding to the Er3+: 4F9/2→4I15/2 transitions were quenched. The energy transfer mechanism between Er3+ and Nd3+ was discussed based on their energy level characteristics. The interaction parameters, CD-A, for the energy transfer processes from Er3+ to Nd3+ in tellurites glass were calculated. Finally, the resonant transfer Er3+: 4I9/2→Nd3+: (4F5/2, 2H9/2) was proposed to be the most probable microscopic process to occur in contrast with the other processes.  相似文献   

12.
The upconversion fluorescence of Er3 ions in LiKGdF5∶Er3 , Dy3 single crystal was studied under 785, 514.5, and 980 nm laser excitation. With the laser excitation set at 785 nm, strong green (centered at 543 nm) upconversion emissions, as well as weak red (651 nm), violet (406 nm), and blue (470 nm) upconversion emissions were obtained. With 514.5 nm laser excitation, violet (406 nm) and blue (470 nm) upconversion emissions were observed. Under 980 nm laser excitation, strong green (543 nm) and weak red (651) emissions were also obtained. The laser power dependence of the upconverted emissions was investigated to understand the upconversion mechanism. The excited state absorption (ESA) and the energy transfer (ET) processes were discussed as the possible mechanisms for all upconversion emissions.  相似文献   

13.
Er3+/Yb3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The ther-mal stability and optical refractive index of the core and cladding glasses were determined by DTA and optical coupler, respectively. The av-erage background loss of tellurite glass fiber was 1.8 dB/m at 1310 nm. Optical microscopy and field emission scanning electron microscope (FESEM) were used to study structural characteristics of preforms and optical fibers. The main loss of tellurite glass fiber could be attributed to scatter centre due to core-cladding interface defects. The amplifier performance of tellurite glass fiber was investigated by pumping with 980 nm laser diode (LD). The gain coefficient and maximum signal gain were 0.21 dB/mW and 10 dB, respectively, for a pumping power of 120 mW. Gains exceeding 5 dB were obtained over 30 um bandwidth from 1535 to 1565 nm. The minimum noise figure was 4.8 dB at 1557 um.  相似文献   

14.
The phosphate glass doped with Gd3+,Tb3+ and Gd3+/Tb3+ were prepared by high temperature melting.The photo-luminescence behavior of Gd3+ and Tb3+ in phosphate glass were investigated by absorption,excitation,and emission spectroscopy.Energy transfer between Gd3+ and Tb3+ in phosphate glass was studied,and it was found that there were two energy transfer mechanisms between Gd3+ and Tb3+ in phosphate glass: one was from 4f7 level of Gd3+ to the 4f8 level of Tb3+,and the other was from 5d level of Tb3+ to 4f7 level of Gd3+.The new findings would be beneficial for the study of Tb3+-doped scintillating phosphate glass.  相似文献   

15.
The spectra of solutions, films and light-emitting diodes of rare earth complexes were studied. It is shown that the absorption spectra of PVK-dopping rare earth complexes can be red-shifted to the visible region and overlap with the emission spectrum of PVK, which makes the energy transfer possible from PVK to the rare earth ion.  相似文献   

16.
Theinterestofinvestigatingthe 4fn -15delectronicconfigurationofthetrivalentrareearth (RE)ionsisbasedonavarietyofapplicationsinthevacuumultra violet (VUV)regionofthespectrum ,suchasthede velopmentofplasmadisplaypanelsandmercury freefluorescenttubes[1] .Amo…  相似文献   

17.
18.
Intense upconversion emissions of YLiF4∶Er3+ synthesized by hydrothermal method were obtained. The upconversion intensity decreases with the increase of environment temperature. In different temperature, the upconversion mechanism is different. At room temperature, the green upconversion mechanism is the combination of two-photon process and three-photon process, and the red upconversion mechanism is two-photon process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号