首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
The dependence of the MgO sputtering power on the structural and optical properties of epitaxially grown MgZnO thin films on GaN/sapphire substrates by radio-frequency magnetron sputtering was investigated. The photoluminescence investigation showed blue shift of 170 meV in MgZnO film grown at the MgO power of 300 W, compared with the ZnO films grown at the MgO power of 0 W, which was attributed to the enhancement of the Mg incorporation at higher power. In addition, increase in Mg mole fraction with increase in sputtering power of MgO was observed from the PL results, and a maximum of 6.6 at.% Mg was obtained at the MgO power of 300 W. The high-resolution X-ray diffraction and transmission electron microscopy (TEM) investigations revealed that the threading dislocation density in the MgZnO thin films increased with increase in sputtering power. Furthermore, microstructural analysis performed by TEM revealed formation of a thin cubic-like phase in the interface between GaN template and MgZnO thin film, together with increased thickness of the interfacial layer with sputtering power.  相似文献   

2.
To find the percolation threshold for the electrical resistivity of metallic Ag-nanoparticle/titania composite thin films, Ag-NP/titania composite thin films, with different volumetric fractions of silver (0.26 ≤ φAg ≤ 0.68) to titania, were fabricated on a quartz glass substrate at 600 °C using the molecular precursor method. Respective precursor solutions for Ag-nanoparticles and titania were prepared from Ag salt and a titanium complex. The resistivity of the films was of the order of 10−2 to 10−5 Ω cm with film thicknesses in the range 100–260 nm. The percolation threshold was identified at a φAg value of 0.30. The lowest electrical resistivity of 10−5 Ω cm at 25 °C was recorded for the composite with the Ag fraction, φAg, of 0.55. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and transmission electron microscopic (TEM) evaluation of the effect of the morphology and the nanostructures of the Ag nanoparticles in the composite thin films on the electrical resistivity of the film revealed that the films consist of rutile, anatase, and metallic Ag nanoparticles homogeneously distributed in the titania matrix. It could be deduced that the electrical resistivity of the thin films formed at 600 °C was unaffected by the anatase/rutile content within the thin film, whereas the shape, size, and separation distance of the Ag nanoparticles strongly influenced the electrical resistivity of the Ag-nanoparticle/titania composite thin films.  相似文献   

3.
ZnSe thin films were prepared by thermal evaporation technique under high vacuum (10−6 Torr) at 300 K and different film thickness. The structure of thin films was measured using grazing incident in-plane X-ray diffraction (GIIXD) and shows single phase zinc blende structure. The particle sizes of the deposited films were estimated for low film thickness by TEM and high film thickness by GIIXD. The particle size of ZnSe films was decreased from ~8.53 to 3.93 nm as film thickness lowered from 200 to 20 nm which ensures the nanocrystalline structure. The optical transmission (T) and reflection (R) in the wavelength range 190–2,500 nm for irradiated and unirradiated ZnSe thin films under investigation were measured. The effect of irradiation of different energies in range (0.1–1.25 MeV) from X-ray, 137Cs and 60Co irradiation sources were studied for ZnSe thin films of 100 and 200 nm thicknesses. The dependence of the absorption spectra and refractive index were investigated for different energies irradiation sources. The ZnSe films show direct allowed interband transition. The effect of particle size of nanocrystalline ZnSe thin films for unirradiated and irradiated by gamma (γ) doses from 137Cs on the optical properties was studied. Both the optical energy bandwidth and absorption coefficient (α) were found to be (γ) dose dependent.  相似文献   

4.
Nano transparent conductive oxide (TCO) Ga-doped ZnO (GZO) thin films with thickness from 260 nm to 620 nm were prepared on glass substrates by RF magnetron sputtering from a powder target with 3 at.% Ga2O3. The substrate temperature was kept at 300 °C. The effect of thickness on the structural, electrical, and optical properties of GZO thin films was investigated. It shows that the nano-GZO films are dense and flat, and have polycrystalline structure with preferentially in the (002) orientation. With the increase of thickness, the crystallinity and the grain sizes of the films are improved, meanwhile the carrier concentration increases and the lowest resistivity of 3.685×10−3 Ω cm occurs in the 620 nm thick GZO film. The average optical transmittance of all the films is over 80% in the visible range. Decreasing the thickness, the optical transmission of the films increase, and the absorption edge shifts to shorter wavelength, which means the optical band gap is broadened.  相似文献   

5.
Highly oriented zinc oxide thin films have been grown on quartz, Si (1 1 1) and sapphire substrates by pulsed laser deposition (PLD). The effect of temperature and substrate parameter on structural and optical properties of ZnO thin films has been characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmission spectra and PL spectra. The experimental results show that the best crystalline thin films grown on different substrate with hexagonal wurtzite structure were achieved at growth temperature 400–500 °C. The growth temperature of ZnO thin film deposited on Si (1 1 1) substrate is lower than that of sapphire and quartz. The band gaps are increasing from 3.2 to 3.31 eV for ZnO thin film fabricated on quartz substrate at growth temperature from 100 to 600 °C. The crystalline quality and UV emission of ZnO thin film grown on sapphire substrate are significantly higher than those of other ZnO thin films grown on different substrates.  相似文献   

6.
Mo0.5W0.5Se2 thin films were obtained by using relative simple chemical route at room temperature. Various preparative conditions of the thin films are outlined. The films were characterized by X-ray diffraction, scanning electron microscope, optical and electrical properties. The grown films were found to be uniform, well adherent to substrate and brown in color. The X-ray diffraction pattern shows that thin films have a hexagonal phase. Optical properties show a direct band gap nature with band gap energy 1.44 eV and having specific electrical conductivity in the order of 10−5 (Ωcm)−1.  相似文献   

7.
ZnO thin films were grown by the pulse laser deposition (PLD) method using Si (100) substrates at various substrate temperatures. The influence of the substrate temperature on the structural, optical, and electrical properties of the ZnO thin films was investigated. All of the thin films showed c-axis growth perpendicular to the substrate surface. At a substrate temperature of 500 °C, the ZnO thin film showed the highest (002) peak with a full width at half maximum (FWHM) of 0.39°. The X-ray Photoelectron Spectroscopy (XPS) study showed that Zn was in excess irrespective of the substrate temperature and that the thin film had a nearly stoichiometrical composition at a substrate temperature of 500 °C. The photoluminescence (PL) investigation showed that the narrowest UV FWHM of 15.8 nm and the largest ratio of the UV peak to the deep-level peak of 32.9 were observed at 500 °C. Hall effect measurement systems provided information about the carrier concentration, mobility and resistivity. At a substrate temperature of 500 °C, the Hall mobility was the value of 37.4 cm2/Vs with carrier concentration of 1.36 × 1018 cm−3 and resistivity of 2.08 × 10−1 Ω cm.  相似文献   

8.
We have measured the reflectivity infrared (IR) spectra of R1−x Ca x MnO3 (R = La, Pr) manganite thin films grown on different substrates (SrTiO3 (STO), LaAlO3 (LAO) and SrLaGaO4 (SLGO)) manganites over a wide frequency (50–5000 cm−1) range. In the Far IR (FIR) region the substrates dominate over the manganite spectrum. However, the previously observed infrared active modes or mode pairs could be identified. In the mid-IR (MIR) region, a characteristic insulating gap at ∼700 cm−1 is always present for all thin film studied, which shows substrate and thickness dependence.  相似文献   

9.
Diamond is one of the most important functional materials for film applications due to its extreme physical and mechanical properties, many of which depend on the crystallographic texture. The influence of various deposition parameters matters to the texture formation and evolution during chemical vapor deposition (CVD) of diamond films. In this overview, the texture evolutions are presented in terms of both simulations and experimental observations. The crystallographic textures in diamond are simulated based on the van der Drift growth selection mechanism. The film morphology and textures associated with the growth parameters α (proportional to the ratio of the growth rate along the〈100〉direction to that along the 〈111〉direction) are presented and determined by applying the fastest growth directions. Thick films with variations in substrate temperature, methane concentration, film thickness, and nitrogen addition were analyzed using high-resolution electron back-scattering diffraction (HR-EBSD) as well as X-ray diffraction (XRD), and the fraction variations of fiber textures with these deposition parameters were explained. In conjunction with the focused ion beam (FIB) technique for specimen preparation, the grain orientations in the beginning nucleation zones were studied using HR-EBSD (50nm step size) in another two sets of thin films deposited with variations in methane concentration and substrate material. The microstructures, textures, and grain boundary character were characterized. Based on the combination of an FIB unit for serial sectioning and HR-EBSD, diamond growth dynamics was observed using a 3D EBSD technique, with which individual diamond grains were investigated in 3D. Microscopic defects were observed in the vicinity of the high-angle grain boundaries by using the transmission electron microscopy (TEM) technique, and the advances of TEM orientation microscopy make it possible to identify the grain orientations in nano-crystalline diamond.  相似文献   

10.
Undoped and Mn doped ZnSe nanoparticles thin films of thickness ranging from 20 to 120 nm have been successfully synthesized via inert gas condensation (IGC) technique with constant Argon gas flow rate and deposition temperature 300 K. The energy dispersive X-ray analysis (EDX) for freshly deposited Zn1−xMnxSe thin films were carried out and revealed that Mn contents (x) were 0, 0.05, 0.16 and 0.25. The as-prepared deposited thin films of different thickness were examined using transmission electron microscope (TEM) and showed that all films were nanocrystalline with particle size ranging from 4.1 to 6.6 nm. The grazing incident in-plane X-ray diffraction (GIIXD) patterns verified nanocrystalline single phase zinc blende structure for 80 nm film thickness for all examined Zn1−xMnxSe compound films. A broadening of main characteristic lines (111), (220) and (311) of cubic phase was observed and was attributed to the lower particle size in nanocrystalline examined Zn1−xMnxSe compound films.  相似文献   

11.
Siqing He 《Thin solid films》2009,517(19):5625-100
Carbon films containing diamond particles were deposited onto a Si (100) substrate by electrolysis of methanol under a direct current potential of 1200 V, with a current density of about 52 mA/cm2, at atmospheric pressure and in the temperature range of 50-55 °C. The surface morphology, microstructure and crystalline structure of the deposited films were characterized by scanning electron microscopy (SEM), Fourier transformation infrared (FTIR) spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM) respectively. The SEM images show that the films are formed by particle clusters and a surrounding glassy phase. The Raman spectra of the films indicate that the particle clusters are composed of diamond and that the glassy phase is composed of amorphous carbon. The FTIR measurements suggest the existence of hydrogen which is mainly bonded to the sp3 carbon in the films. The transmission electron diffraction patterns further indicate that the particles in the films consist of single-crystalline diamond. Both TEM and Raman measurements have confirmed unambiguously the formation of diamond crystals in the deposit, although the particles are not uniformly distributed on the entire surface.  相似文献   

12.
InP thin films were prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which were atomized with compressed air as carrier gas. The InP thin films were obtained on glass substrates. Thin layers of InP have been grown at various substrate temperatures in the range of 450–525°C. The structural properties have been determined by using X-ray diffraction (XRD). The changes observed in the structural phases during the film formation in dependence of growth temperatures are reported and discussed. Optical properties, such as transmission and the band gap have been analyzed. An analysis of the deduced spectral absorption of the deposited films revealed an optical direct band gap energy of 1.34–1.52 eV for InP thin films. The InP films produced at a substrate temperature 500°C showed a low electrical resistivity of 8.12 × 103 Ω cm, a carrier concentration of 11.2 × 1021 cm−3, and a carrier mobility of 51.55 cm2/Vs at room temperature.  相似文献   

13.
Y.F. Ding  J.S. Chen  B.C. Lim  B. Liu 《Thin solid films》2009,517(8):2638-2647
FePt:C thin films were deposited on CrRu underlayers by DC magnetron co-sputtering. The effects of C content, FePt:C film thickness and substrate temperature on the microstructural and magnetic properties of the epitaxial FePt (001) films were studied. Experimental results showed that even with 30 vol.% C doping, the FePt films could keep a (001) preferred orientation at 350 °C. When a FePt:C film was very thin (< 5 nm), the film had a continuous microstructure instead of a granual structure with C diffused onto the film surface. With further increased film thickness, the film started to nucleate and formed a column microstructure over continuous FePt films. A strong exchange coupling in the FePt:C films was believed to be due to the presence of a thin continuous FePt layer attributed to the carbon diffusion during the initial stage of the FePt:C film growth. Despite the presence of a strong exchange coupling in the FePt:C (20 vol.% C) film, the SNR ratio of the FePt:C media was about 10 dB better than that of the pure FePt media. The epitaxial growth of the FePt:C films on the Pt layers was observed from high resolution TEM cross sectional images even for the films grown at about 200 °C. The TEM images did not show an obvious change in the morphology of the FePt:C films deposited at different temperatures (from 200 °C to 350 °C), though the ordering degree and coercivity of the films increased with increased substrate temperature.  相似文献   

14.
GaN films with different thicknesses were grown on Si(111) substrates by Plasma—Assisted Molecular Beam Epitaxy (PA-MBE). The optical properties of the films were investigated using spectrophotometric measurements of the reflectance in the wavelength range 200–3,300 nm. With increasing film thickness, the refractive index (n) increased slightly, while the optical energy gap (Eg) changed with no specific trend. The structural properties of the grown films were studied at (002) reflections using two types of rocking curve measurements; normal rocking curve (ω-scan) and triple axis rocking curve (ω/2θ-scan). The Full Width at Half Maximum (FWHM) of rocking curve decreased with increasing film thickness. Hall effect measurements showed that all the samples were n-type with carrier concentrations decreasing from 8.025 × 1018 to 5.65 × 1017 cm−3, and mobility increasing from 14 to 110 cm2 V−1 s−1 as increasing the film thickness from 590 to 1,420 nm, respectively. Photoluminescence (PL) spectra for the grown GaN films with different thicknesses were measured at room temperature. PL spectra for all the samples exhibited band edge (BE) emissions at peak energies of 3.24 eV, with peak intensities increased with increasing the film thickness.  相似文献   

15.
The chemical vapor deposited (CVD) BP films on Si(100) (190 nm)/SiO x (370 nm)/Si(100) (625 μm) (SOI) and sapphire (R-plane) (600 μm) substrates were prepared by the thermal decomposition of the B2H6–PH3–H2 system in the temperature range of 800–1050 °C for the deposition time of 1.5 h. The BP films were epitaxially grown on the SOI substrate, but a two-step growth method, i.e., a buffer layer at lower temperature and sequent CVD process at 1000 °C for 1.5 h was effective for obtaining a smooth film on the sapphire substrate. The electrical conduction types and electrical properties of these films depended on the growth temperature, gases flow rates and substrates. The thermal conductivity of the film could be replaced by the substrate, so that the calculated thermoelectric figure-of-merit (Z) for the BP films on the SOI substrate was 10−4–10−3/K at 700–1000 K. Those on the sapphire substrate were 10−6–10−5/K for the direct growth and 10−5–10−4/K for the two-step growth at 700–900 K, indicating that the film on a sapphire by two-step growth would reduce the defect concentrations and promote the electrical conductivity.  相似文献   

16.
Nanocrystalline ZnO thin films were prepared by the sol–gel method and annealed at 600 °C by conventional (CTA) and rapid thermal annealing (RTA) processes on fluorine-doped tin oxide (FTO)-coated glass substrates for application as the work electrode for a dye-sensitized solar cell (DSSC). ZnO films were crystallized using a conventional furnace and the proposed RTA process at annealing rates of 5 °C/min and 600 °C/min, respectively. The ZnO thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses. Based on the results, the ZnO thin films crystallized by the RTA process presented better crystallization than films crystallized in a conventional furnace. The ZnO films crystallized by RTA showed higher porosity and surface area than those prepared by CTA. The results show that the short-circuit photocurrent (J sc) and open-circuit voltage (V oc) values increased from 4.38 mA/cm2 and 0.55 V for the DSSC with the CTA-derived ZnO films to 5.88 mA/cm2 and 0.61 V, respectively, for the DSSC containing the RTA-derived ZnO films.  相似文献   

17.
Indium tin oxide (ITO) thin films were deposited by radio frequency (RF) magnetron sputtering onto glass substrates. The transparent and conducting ITO thin films were obtained on externally unheated glass substrate, without any post-heat treatment, and by varying the deposition process parameters such as the working pressure and the RF Power. The effect of the variation of the above deposition parameters on the structural, surface morphology, electrical, and optical properties of the thin films have been studied. A minimum resistivity of 2.36 × 10−4 Ω cm and 80% transmittance with a figure of merit 37.2 × 10−3 Ω−1 is achieved for the thin films grown on externally unheated substrate with 75 W RF power and 0.5 mTorr working pressure.  相似文献   

18.
It is the purpose of this study to evaluate the field emission property of carbon nanotubes (CNTs) prepared by microwave plasma-enhanced chemical vapor deposition (MPCVD) method. Nickel layer of 5 nm in thickness on 20-nm thickness titanium nitride film was transformed into discrete islands after hydrogen plasma pretreatment. CNTs were then grown up on Ni-coated areas by MPCVD. Through the practice of Taguchi method, superior CNT films with very low emission onset electric field, about 0.7 V/μm (at J = 10 μA/cm2), are attained without post-deposition treatment. It is found that microwave power has the most important influence on the field emission characteristics of CNT films. The increase of methane flow ratio will downgrade the degree of graphitization of CNT and thus its field emission characteristics. Scanning electron microscope and transmission electron microscopy (TEM) observation and energy dispersive X-ray spectrometer analysis reveal that CNT growth by MPCVD is based on tip-growth mechanism. TEM micrographs validate the hollow, bamboo-like structure of the multi-walled CNTs.  相似文献   

19.
Titanium sulfide thin film electrodes were prepared by the pulsed laser deposition method using a KrF excimer laser. Thin films of various compositions were prepared under several deposition conditions such as Ar gas pressure, laser fluence, and target-substrate distance. The thickness of the titanium sulfide thin film prepared under Ar gas pressure of 0.01 Pa, the pulse energy of 200 mJ/pulse, and the distance of 5 cm between the target and the substrate was ca. 400 nm. The films prepared at room temperature showed no peaks in the XRD pattern and no periodic lattice fringe in high-resolution transmission electron microscopic images, suggesting that they were amorphous. An all-solid-state cell using a TiS4.0 thin film electrode formed on a pelletized Li2S–P2S5 glass–ceramic electrolyte showed the reversible capacity of 543 mAh g−1, which was higher than that of a cell using a TiS1.7 film. The former solid-state cell retained higher capacity for 20 cycles at room temperature.  相似文献   

20.
Solar cell technologically important binary indium selenide thin film has been developed by relatively simple chemical method. The reaction between indium chloride, tartaric acid, hydrazine hydrate and sodium selenosulphate in an aqueous alkaline medium at room temperature gives deposits In2Se3 thin film. Various preparative parameters are discussed. The as grown films were found to be transparent, uniform, well adherent, red in color. The prepared films were studied using X-ray diffraction, scanning electron microscopy, atomic absorption spectroscopy, Energy dispersive atomic X-ray diffraction, optical absorption and electrical conductivity properties. The direct optical band gap value Eg for the films was found to be as the order of 2.35 eV at room temperature and having specific electrical conductivity of the order of 10−2 (Ω cm)−1 showing n-type conduction mechanism. The utility of the adapted technique is discussed from the point of view of applications considering the optoelectric and structural data obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号