首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent to which holographic modal wavefront sensing can be applied to the detection of ocular aberrations was investigated. First, the idea of extending the dynamic range of the sensor by increasing the mask bias and the collection area of the pinhole detectors used in the sensor is reviewed. Errors in the detection of single-mode aberrations owing to reduced coherence from retinal scattering, photon, readout, and quantization noise are evaluated. A sensitivity-to-noise metric is introduced to evaluate sensor designs and is found to be maximized by using a pinhole detector radius of 8.6(flambda/NDelta) for every wave of mask bias (where f=transform lens focal length, lambda=wavelength, and N and Delta are the number and size of the hologram pixels, respectively). The problem of detecting ocular aberrations composed of multiple modes required a generalization of the sensitivity measure to include all incident aberration modes. A "detect and correct" ocular aberration detection scheme was implemented that reduced the effects of cross talk and showed a maximum sensitivity-to-noise ratio of 40, which varied inversely with the size of the ocular aberration being detected.  相似文献   

2.
We investigate the performance and capability of a holographic modal wavefront sensor (HMWS) that is based on a multiplexed phase computer-generated hologram (MPCGH). The theoretical treatments of the HMWS are presented with scalar diffraction approximations and Fourier analysis. Several MPCGHs have been designed with different linear carrier frequencies, by using of the multiplexed coding scheme we have proposed, and by coding some common Zernike modes. The numerical simulation is carried out to investigate the performance of the HMWS to detect particular aberration mode(s), by considering the effect of different carrier frequency selections and the capability of coding a large number of modes. The results exhibit the expected characteristics of a corresponding symmetric spot pair, and indicate that the wavefront distorted by a particular Zernike mode(s) can be retrieved immediately through solving the amplitude of each mode coded in MPCGHs through the response curves of the HMWS.  相似文献   

3.
Weijuan Q  Choo CO  Yingjie Y  Asundi A 《Applied optics》2010,49(33):6448-6454
Microlenses have been characterized by a digital holographic microscopy system, which is immune to the inherent wavefront aberration. The digital holographic microscopy system takes advantage of fiber optics and uses the light emitted directly from a single-mode fiber as the recording reference wave. By using such a reference beam, which is quasi-identical to the object beam, the inherent wavefront aberration of the digital holographic microscope is removed. The alignment of the optical setup can be optimized with the help of numerical reconstruction software to give the system phase with the off-axis tilt removed. There is one, and only one, reference fiber point position to give a reference wavefront that is quasi-identical to the object wavefront where the system is free of wavefront aberration and directly gives the quantitative phase of the test object without the need for complicated numerical compensation.  相似文献   

4.
Wang F  Wang X  Ma M  Zhang D  Shi W  Hu J 《Applied optics》2006,45(2):281-287
As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%.  相似文献   

5.
Coherence-gated wavefront sensing (CGWS) allows the determination of wavefront aberrations in strongly scattering tissue and their correction by adaptive optics. This allows, e.g., the restoration of the diffraction limit in light microscopy. Here, we develop a model, based on ray tracing of ballistic light scattered from a set of discrete scatterers, to characterize CGWS performance as it depends on coherence length, scatterer density, coherence-gate position, and polarization. The model is evaluated by using Monte Carlo simulation and verified against experimental measurements. We show, in particular, that all aberrations needed for adaptive wavefront restoration are correctly sensed if circularly polarized light is used.  相似文献   

6.
S Dong  T Haist  W Osten 《Applied optics》2012,51(25):6268-6274
Strongly aberrated wavefronts lead to inaccuracies and nonlinearities in holography-based modal wavefront sensing (HMWS). In this contribution, a low-resolution Shack-Hartmann sensor (LRSHS) is incorporated into HMWS via a compact holographic design to extend the dynamic range of HMWS. A static binary-phase computer-generated hologram is employed to generate the desired patterns for Shack-Hartmann sensing and HMWS. The low-order aberration modes dominating the wavefront error are first sensed with the LRSHS and corrected by the wavefront modulator. The system then switches to HMWS to obtain better sensor sensitivity and accuracy. Simulated as well as experimental results are shown for validating the proposed method.  相似文献   

7.
Because of mechanical aspects of fabrication, launch, and operational environment, space telescope optics can suffer from unforeseen aberrations, detracting from their intended diffraction-limited performance goals. We give the results of simulation studies designed to explore how wave-front aberration information for such near-diffraction-limited telescopes can be estimated through a regularized, low-pass filtered version of the Gonsalves (least-squares) phase-diversity technique. We numerically simulate models of both monolithic and segmented space telescope mirrors; the segmented case is a simplified model of the proposed next generation space telescope. The simulation results quantify the accuracy of phase diversity as a wave-front sensing (WFS) technique in estimating the pupil phase map. The pupil phase is estimated from pairs of conventional and out-of-focus photon-limited point-source images. Image photon statistics are simulated for three different average light levels. Simulation results give an indication of the minimum light level required for reliable estimation of a large number of aberration parameters under the least-squares paradigm. For weak aberrations that average a 0.10lambda pupil rms, the average WFS estimation errors obtained here range from a worst case of 0.057lambda pupil rms to a best case of only 0.002lambda pupil rms, depending on the light level as well as on the types and degrees of freedom of the aberrations present.  相似文献   

8.
A modal wavefront sensor for ocular aberrations exhibits two main advantages compared to a conventional Shack–Hartmann sensor. As the wavefront is detected in the Fourier plane, the method is robust against local loss of information (e.g. local opacity of ocular lens as in the case of cataract), and is not dependent on the spatial distribution of wavefront sampling. We have proposed a novel method of wavefront sensing for ocular aberrations that directly detects the strengths of Zernike aberrations. A multiplexed Fourier computer-generated hologram has been designed as the binary phase element (BPE) for the detection of second-order and higher-order ocular aberrations (HOAs). The BPE design has been validated by comparing the simulated far-field pattern with the experimental results obtained by displaying it on a spatial light modulator. Simulation results have demonstrated the simultaneous wavefront detection with an accuracy better that ~λ/30 for a measurement range of ±2.1λ with reduced cross-talk. Sensor performance is validated by performing a numerical experiment using the City data set for test waves containing second-order and HOAs and measurement errors of 0.065?µm peak-to-valley (PV) and 0.08?µm (PV) have been obtained, respectively.  相似文献   

9.
The accuracy of a confocal signal-based wavefront corrector depends on several parameters such as spatial variation of optical properties within the specimen, aberration magnitude and composition, time required for the correction, etc. Here, a numerical analysis has been performed with the aim to improve system performance. The goal of the search algorithm in a confocal signal-based wavefront corrector is to estimate the Zernike coefficients of the aberrations. High-magnitude aberrations show low Strehl ratios. Repeating the correction process results in higher Strehl ratios, but at the cost of increased time. An in-focus on-axis specimen results in higher Strehl ratio compared to an out-of-focus and off-optical-axis specimen. For all cases, the wavefront correction accuracy is better, when the diameter of the pinhole is chosen to be equal to that of the Airy disk. The lower limit on the pinhole size for detecting small magnitude aberrations is set by noise.  相似文献   

10.
Dong S  Haist T  Osten W  Ruppel T  Sawodny O 《Applied optics》2012,51(9):1318-1327
The crosstalk problem of holography-based modal wavefront sensing (HMWS) becomes more severe with increasing aberration. In this paper, crosstalk effects on the sensor response are analyzed statistically for typical aberrations due to atmospheric turbulence. For specific turbulence strength, we optimized the sensor by adjusting the detector radius and the encoded phase bias for each Zernike mode. Calibrated response curves of low-order Zernike modes were further utilized to improve the sensor accuracy. The simulation results validated our strategy. The number of iterations for obtaining a residual RMS wavefront error of 0.1λ is reduced from 18 to 3.  相似文献   

11.
We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems.  相似文献   

12.
The optimization of the experimental parameters of two multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals is investigated. Two methods are used to record the holograms: simultaneous and sequential multiplexing. These two processes are optimized to produce two multiplexed Bragg gratings that have the same and the highest possible diffraction efficiencies in the first order. The two methods show similar results when suitable recording parameters are used. The parameters of the recorded gratings (mainly the refractive-index modulation) are retrieved by use of an extension of the rigorous coupled-wave theory to multiplexed gratings. Finally, the response of the holograms to an electric field is studied. We demonstrate few coupling effects between the behavior of both gratings, and we expect a possibility of switching from one grating to the other.  相似文献   

13.
Conventional adaptive-optics systems correct the wavefront by adjusting a deformable mirror (DM) based on measurements of the phase aberration taken in a pupil plane. The ability of this technique, known as phase conjugation, to correct aberrations is normally limited by the maximum spatial frequency of the DM. In this paper we show that conventional phase conjugation is not able to achieve the dark nulls needed for high-contrast imaging. Linear combinations of high frequencies in the aberration at the pupil plane "fold" and appear as low-frequency aberrations at the image plane. After describing the frequency-folding phenomenon, we present an alternative optimized solution for the shape of the deformable mirror based on the Fourier decomposition of the effective phase and amplitude aberrations.  相似文献   

14.
Doble N  Miller DT  Yoon G  Williams DR 《Applied optics》2007,46(20):4501-4514
Numerous types of wavefront correctors have been employed in adaptive optics (AO) systems for correcting the ocular wavefront aberration. While all have improved image quality, none have yielded diffraction-limited imaging for large pupils (>/=6 mm), where the aberrations are most severe and the benefit of AO the greatest. To this end, we modeled the performance of discrete actuator, segmented piston-only, and segmented piston/tip/tilt wavefront correctors in conjunction with wavefront aberrations measured on normal human eyes in two large populations. The wavefront error was found to be as large as 53 microm, depending heavily on the pupil diameter (2-7.5 mm) and the particular refractive state. The required actuator number for diffraction-limited imaging was determined for three pupil sizes (4.5, 6, and 7.5 mm), three second-order aberration states, and four imaging wavelengths (0.4, 0.6, 0.8, and 1.0 microm). The number across the pupil varied from only a few actuators in the discrete case to greater than 100 for the piston-only corrector. The results presented will help guide the development of wavefront correctors for the next generation of ophthalmic instrumentation.  相似文献   

15.
The imaging properties of optical microscopes are often compromised by aberrations that reduce image resolution and contrast. Adaptive optics technology has been employed in various systems to correct these aberrations and restore performance. This has required various departures from the traditional adaptive optics schemes that are used in astronomy. This review discusses the sources of aberrations, their effects and their correction with adaptive optics, particularly in confocal and two-photon microscopes. Different methods of wavefront sensing, indirect aberration measurement and aberration correction devices are discussed. Applications of adaptive optics in the related areas of optical data storage, optical tweezers and micro/nanofabrication are also reviewed.  相似文献   

16.
We analyze the spatiotemporal intensity of pulses with durations of 20 fs and shorter and a carrier wavelength of 810 nm at the paraxial focal plane of an achromatic doublet lens. The incident pulse is well-collimated, and we use the Seidel aberration theory for thin lenses to evaluate the phase change due to the aberrations of the lens. In a set of cemented thin lenses with the stop at the lens, there is only spherical aberration, coma, astigmatism and field curvature, whereas the distortion aberration in the phase front is zero. We analyze the effect of these aberrations in the focusing of ultrashort pulses for homogenous illumination. We will show that the temporal spreading introduced by these aberrations in pulses shorter than 20 fs at 810 nm is very small but the spatial spreading is not, which reduces the intensity of the pulse considerably.  相似文献   

17.
The minimum number of samples necessary to fully characterize the aberration pattern of the eye is a question under debate in the clinical as well as the scientific community. We performed repeated measurements of ocular aberrations in 12 healthy nonsurgical human eyes and in 3 artificial eyes, using different sampling patterns (hexagonal, circular, and rectangular with 19 to 177 samples, and 3 radial patterns with 49 sample coordinates corresponding to zeros of the Albrecht, Jacobi, and Legendre functions). For each measurement set we computed two different metrics based on the root-mean-square (RMS) of difference maps (RMS_Diff) and the proportional change in the wavefront (W%). These metrics are used to compare wavefront estimates as well as to summarize results across eyes. We used computer simulations to extend our results to "abnormal eyes" (keratoconic, post-LASIK, and post-radial keratotomy eyes). We found that the spatial distribution of the samples can be more important than the number of samples for both our measured as well as our simulated "abnormal" eyes. Experimentally, we did not find large differences across patterns except, as expected, for undersampled patterns.  相似文献   

18.
It is shown that the aberration estimated at any point of the pupil using wavefront slope aberrometers such as Hartmann-Shack wavefront sensors or laser ray tracers is a spatial average of the actual aberration weighted by a characteristic function that depends on the aberrometer design and on the estimation procedure. This characteristic function, whose explicit form is given here for wavefront slope aberrometers using either modal or zonal estimators, may be useful in analyzing some basic aspects of the aberrometer performance. It is also instrumental in establishing the links between the statistical properties of the actual and the estimated aberrations. Explicit formulas are given to show in terms of this function how the bias arises in the first- and second-order statistics of the retrieved aberrations. This approach is mathematically equivalent to the analysis of the effects of modal coupling (cross-coupling and aliasing). It may provide, however, some complementary insight.  相似文献   

19.
李强  沈忙作 《光电工程》2006,33(11):114-119
基于相位差法的波前检测技术,主要是利用在焦面和离焦位置上同时采集的一对图像,对光瞳上的波前相位分布进行恢复,同时也可以对目标进行恢复。与哈特曼波前传感器和剪切干涉仪等波前检测技术相比,相位差法具有光路简单、易于实现的特点,同时可以采用扩展目标作为参考源,主要适用于对实时性要求不高的领域。在计算机模拟大气湍流和成像系统的基础上,我们使用有限内存拟牛顿法对波前相位和目标进行了恢复。模拟研究结果表明,相位差法可以较准确的恢复出波前相位,并且最优化的离焦波面差为一个波长。  相似文献   

20.
Mahajan VN 《Applied optics》2010,49(36):6924-6929
The classical aberrations of an anamorphic optical imaging system, representing the terms of a power-series expansion of its aberration function, are separable in the Cartesian coordinates of a point on its pupil. We discuss the balancing of a classical aberration of a certain order with one or more such aberrations of lower order to minimize its variance across a rectangular pupil of such a system. We show that the balanced aberrations are the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point. The compound Legendre polynomials are orthogonal across a rectangular pupil and, like the classical aberrations, are inherently separable in the Cartesian coordinates of the pupil point. They are different from the balanced aberrations and the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号