首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Power consumption was measured in mechanically agitated contactors of internal diameter 0.3 m, 0.57 m, 1.0 m and 1.5 m. Tap water was used as a liquid in all the experiments. The impeller speed was varied in the range of 0.3-13.33 r/s. Three types of impellers, namely disc turbine (DT), pitched-blade downflow turbine (PTD) and pitched blade upflow turbine (PTU) were employed. The ratio of the impeller diameter to vessel diameter (D/T) and the ratio of impeller blade width to impeller diameter (W/D) were varied over a wide range. The effects of impeller clearance from the tank bottom (C), blade angle (φ), total liquid height (H/T), number of impeller blades (nb) and blade thickness (tb) were studied in detail. Power consumption was measured using a torque table

Power number was found to have a strong dependence on the flow pattern generated by the impeller. Unlike, DT and PTU, the power number of PTD was found to increase with a decrease in clearance. The PTD (T/3) was found to have the lowest power number in all the vessels and the power number increased with either a decrease or an increase in the impeller diameter from T/3. The dependence of power number on impeller diameter was found to be more prominent when the D/T ratio was more than 0.3. In general, the power number was found to increase with an increase in blade angle and blade width. The effect of blade width was found to be more prominent in larger diameter vessels. A correlation has been developed for power number in the case of PTD impellers.  相似文献   

2.
A characterisation of three commonly used impellers was made in this study by measuring local mean velocities and the fluctuations of these velocities with the LDV technique. The data was used to estimate volumetric flow, velocity fluctuations and turbulent intensity in the impeller region of the tank. The impellers investigated were a high flow impeller, a pitched blade turbine and a Rushton turbine. The cylindrical vessel used was made of Perspex, had a dished bottom (DIN 28013), was equipped with four baffles and had an inner diameter of 0.45 m. It was found that the bulk velocities could be scaled with the tip-speed of the impeller (ND). The flow rate at constant impeller speed increased in the order high flow impeller — Rushton turbine — pitched blade turbine. The corresponding order for the turbulence fluctuation is: high flow impeller — pitched blade turbine — Rushton turbine. The velocity profile of the flow out from the high flow impeller was furthermore, not as smooth as could be expected.  相似文献   

3.
This article deals with CFD simulations of flow inside stirred vessels equipped with three and four radial or axial impellers mounted on the same shaft. A comparison was made between simulated data and experiments for one‐ and two‐impeller systems and was presented in Part I [1]. The effect of the lowest impeller off‐bottom clearance, number of impellers used, and impeller type on the tracer distribution was studied. The simulations were mainly focused on the grid size and type and the analysis of the concentration curves in each impeller section. The predicted velocity fields, power and pumping numbers, concentration curves, and mixing times were validated with experimental data. The simulation results show the significant influence of the grid density on the velocity profiles and power and pumping numbers in contrast to the low impact on the concentration curves. A better prediction of the concentration curves was reached when radial impellers were used; the mixing times were generally over‐predicted.  相似文献   

4.
三叶后掠-HEDT组合桨搅拌釜内流场的模拟及实验   总被引:1,自引:0,他引:1       下载免费PDF全文
周勇军  袁名岳  徐昊鹏  何华  孙建平 《化工学报》2019,70(12):4599-4607
对应用于聚乙烯聚合反应中的三叶后掠-HEDT组合桨的搅拌釜内流场进行了模拟研究,分析组合桨的离底距C 1、桨间距C 2以及转速N的变化对搅拌釜内流场的影响,利用PIV实验对模拟结果进行了验证;将该组合桨与三叶后掠-六直叶圆盘涡轮组合桨进行了模拟对比研究。结果表明:当桨间距与釜内径的比为0.35时,釜内桨叶间的流体流动效果最好,该条件下能够改善搅拌釜上层流体的速度分布;当离底距与釜内径的比值为0.29时,组合桨下方出现了整体的环流,有利于釜底流体的混合;桨叶转速N=90 r/min时釜内流体速度分布均匀,同时上层HEDT桨叶产生的射流方向趋于水平。两种组合桨的对比研究表明:二者流型相近,但前者搅拌功率能够得到明显降低。研究结果可为三叶后掠-HEDT组合桨在聚乙烯聚合反应釜中的工程应用提供参考。  相似文献   

5.
Solids suspension characteristics in gas—liquid–solid three‐phase stirred tanks with multi‐impellers were experimentally examined. Minimum impeller speeds for ultimately homogeneous solid suspension have been measured stirred tank reactors. Three impellers were installed: two four‐pitched blade downflow disk turbines and one Pfaudler type impeller chosen to provide good gas dispersion and to accomplish off‐bottom suspension of solid particles, respectively. Gas dispersion causes an increase in particle sedimentation associated with a decrease in power consumption and as a result, minimum impeller speeds for ultimately homogeneous solid suspension increase with increasing gas flow rates. A correlation was developed to predict minimum impeller speeds for ultimately homogeneous solid suspension. The proposed correlation, which agrees satisfactorily with the experimental results, is expected to be useful in design and scale‐up.  相似文献   

6.
The critical impeller speed for suspension of solid particles (Njs) has been measured in multi-impeller mechanically agitated contactors of 0.15 and 0.30m id and 1.0 m height. Three types of impellers, i.e. disk turbine (DT), pitched turbine downflow(PTD) and pitched turbine upflow(PTU) were used. The number of impellers used in the 0.3 m and 0.15 m id reactors were three and four, respectively. The distance maintained between two impellers was equivalent lo the tank diameter. The effect of impeller type and diameter, particle size and loading, and clearance of the bottom impeller from the reactor bottom was studied and results compared with those of single impeller agitated contactors. PTD impeller was found to be more efficient for solid suspension. The Njs values obtained in reactors with multiple impeller are essentially the same as those observed in single impeller reactor and the bottom impeller plays dominant role in determining the Njs, values. An empirical correlation has been proposed for estimation of Njs and an attempt has been made to explain the mechanism of suspension in multi-impeller agitated reactor.  相似文献   

7.
多层新型桨搅拌槽内气-液两相流动的实验与数值模拟   总被引:6,自引:0,他引:6  
对三层新型组合桨气-液两相搅拌槽内的流体流动进行了实验研究,并采用计算流体力学(CFD)的方法对气-液两相搅拌槽的通气搅拌功率、流场、局部气含率及总体气含率进行了数值模拟,数值模拟采用了欧拉-欧拉方法,数值模拟结果与实验值吻合良好,同时考察了通气流量和搅拌转速对通气搅拌功率和气含率的影响规律. 研究结果表明,欧拉-欧拉方法能较好地模拟搅拌槽内气-液两相流的流动状况.  相似文献   

8.
Mixing of non‐Newtonian fluids with axial and radial flow impellers is prone to a significant extent of nonideal flows (e.g., dead zones and channelling) within the stirred reactors. To enhance the performance of the continuous‐flow mixing of pseudoplastic fluids with yield stress, close‐clearance impellers were utilised in this study. We explored the effects of various parameters such as the type of close‐clearance impeller (i.e., the double helical ribbon (DHR) and anchor impellers), impeller speed (25–500 rpm), impeller pumping direction, fluid rheology (0.5–1.5% xanthan gum solution), fluid flow rate (3.20–14.17 L min?1) and the locations of outlet (configurations: top inlet–top outlet, top inlet–bottom outlet) on the dynamic performance of the mixing vessel. The performance of the DHR impeller was then compared to the performance of various types of impellers such as axial‐flow (Lightnin A320) and radial‐flow (Scaba 6SRGT) impellers. The dynamic tests showed that the DHR impeller was the most efficient impeller for reducing the extent of nonideal flows in the continuous‐flow mixer among the impellers employed in this study. In addition, the mixing quality was further improved by optimising the power input, increasing the mean residence time, decreasing the fluid yield stress, using the up‐pumping impeller mode and using the top inlet–bottom outlet configuration. © 2011 Canadian Society for Chemical Engineering  相似文献   

9.
应用CFD软件Fluent 12.0和并行计算机工作站对双层改进型INTER-MIG桨式搅拌槽内的固液悬浮特性、临界离底悬浮转速及功率消耗进行数值模拟,分析了在固体体积分数as=30%下,转速n、桨叶离底距离C1和桨间距C2等因素对搅拌槽内颗粒悬浮特性的影响. 结果表明,在一定的转速和桨径下,改变C1和C2会改变流场的局部结构,选取适合的C1和C2可使固液混合更均匀,有利于颗粒悬浮和整个搅拌槽传质传热的进行. 最佳桨叶离底高度与槽径比为0.36,最佳桨叶间距与槽径比为0.44;在该最佳工况下临界离底悬浮转速Njs=118.3 r/min;得到既能达到完全离底悬浮、又能使搅拌功耗最小的最佳转速为n=124 r/min.  相似文献   

10.
Despite much research on gas-liquid-solid systems and their widespread application in industry, gas dispersion with solid suspension in multistage stirred reactors equipped with multiple impellers has received little attention. We report here the critical just-suspension impeller speed for different concentrations of solid particles, gas holdup, and shaft power in a vessel of 0.48 m diameter with four baffles and dished base. Five agitator configurations, each with three impellers mounted on a single shaft, have been used in the experiments. Two novel impeller designs were used, a deep hollow blade (semi-ellipse) disc turbine (HEDT) and four-wide-blade hydrofoil impellers. The hydrofoils were used in both up-pumping (WHU) and down-pumping (WHD) modes. Glass beads of 50 ∼ 150 μm diameter and density 2500 kg · m-3 were suspended at solid volumetric concentrations of 1.5, 3, 6, 9, and 15%. Results show that these suspended solids have little effect on the relative power demand. Agitators using the HEDT radial dispersing impeller at the bottom have a higher relative power demand (RPD = PG/PU) than those with WHD or WHU as the lowest one. For all impeller combinations there is little or no effect on gas holdup with increasing solid concentrations. Of the five different impeller combinations, those with an axial flow bottom impeller have significantly higher just-suspension agitation speeds and power consumption, so mounting the hydrofoil impeller at the bottom is not the optimal configuration for particle suspension. Of these impeller combinations, at a given gas flow rate the arrangement of HEDT + 2WHU has the highest relative power demand, gas holdup, and power input for both the suspension of settling particles and gas dispersion.  相似文献   

11.
The dependence of power consumption on impeller spacing in unaerated and aerated gas‐liquid contactors agitated by dual Rushton turbine systems was studied, and the gas flow rate and viscosity effects were measured in relation to these parameters. The experiments were carried out in a 0.19 m i.d. vessel stirred by two Rushton turbines with a diameter d = 0.10 m; with blade length and blade height 0.25 d and 0.2 d, respectively. In tap water the impellers acted independently for spacings greater than 1.65 d, while in glycerol solutions the two impellers already acted independently at an impeller spacing equal to 1.2 d. In aerated systems, a notable increase in the power consumption with increasing impeller spacing could be detected for small gas flow rates and low viscosities, while a decrease in the Newton number with increasing Froude number could be observed at constant impeller spacing. The Newton number was not affected by flow number at high viscosity values.  相似文献   

12.
运用粒子图像测速仪研究双层桨搅拌槽内流体流动   总被引:4,自引:1,他引:3       下载免费PDF全文
The flow fields in a dual Rushton impeller stirred tank with diameter of 0.48 m (T) were measured by using Particle Image Velocimetry (PIV). Three different size impellers were used in the experiments with diameters of D = 0.33T, 0.40T and 0.50T, respectively. The multi-block and 360° ensemble-averaged approaches were used to measure the radial and axial angle-resolved velocity distributions. Three typical flow patterns, named, merging flow, parallel flow and diverging flow, were obtained by changing the clearance of the bottom impeller above the tank base (C1) and the spacing between the two impellers (C2). The results show that while C1 is equal to D, the parallel flow occurs as C2≥0.40T, C2≥0.38T and C2≥0.32T and the merging flow occurs as C2≤0.38T, C2≤0.36T and C2≤0.27T for the impellers with diameter of D=0.33T, 0.40T and 0.50T, respectively. When C2 is equal to D, the diverging flow occurs in the value of C1≤0.15T for all three impellers. The flow numbers of these impellers were calculated for the parallel flow. Trailing vortices generated by the lower impeller for the diverging flow were shown by the 10° angle-resolved velocity measurements. The peak value of turbulence kinetic energy ( k/V^2tip = 0.12-0.15 or above) appears along the center of the impeller discharging stream.  相似文献   

13.
组合桨聚合釜内非牛顿流体的混合特性   总被引:5,自引:1,他引:5  
在φ476mm的椭圆底有机玻璃聚合釜中,以羧甲基纤维素-甘油水溶液(前者质量分数为1.3%)为实验物系。利用酸碱中和法测定了9种不同的搅拌桨直径与聚合釜直径比接近于1的组合搅拌桨沿聚合釜轴向及径向的混合特性。结果表明:内外螺带-锚式组合桨的轴向混合最强,但径向混合较差。框板式搅拌桨的轴向混合较内外螺带-锚式组合桨弱,但比改进偏框式桨强,其径向混合较后者弱。改进偏框桨的7种不同组合方式沿径向的混合良好,多数组合桨沿轴向的混合较前2种组合桨弱,更接近于平推流。  相似文献   

14.
运用计算流体力学(CFD)数值模拟方法研究在相同工况下(搅拌桨转速为400 r/min、通气速度为0.86 vvm和操作温度为15 ℃),4种不同桨叶组合方式对5 L气液生物反应器流场、氧传质系数kLα、空气体积分数、气含率(体积分数)和功率的影响,评判各桨叶组合综合性能.计算结果表明:1号方案上下档均为径向桨,具有最...  相似文献   

15.
Flow in baffled stirred vessels involves interactions between flow around rotating impeller blades and stationary baffles. When more than one impeller is used (which is quite common in practice), the flow complexity is greatly increased, especially when there is an interaction between two impellers. The extent of interaction depends on relative distances between the two impellers and clearance from the vessel bottom. In this paper we have simulated flow generated by two Rushton (disc) impellers. A computational snapshot approach was used to simulate single-phase flow experiments carried out by Rutherford et al. (1996). The computational model was mapped on the commercial CFD code FLUENT (Fluent Inc., USA). The simulated results were analyzed in detail to understand flow around impellers and interaction between impellers. The model predictions were verified using the data of Rutherford et al. (1996). The results presented in this paper have significant implications for applications of computational fluid mixing tools for designing multiple impeller stirred reactors.  相似文献   

16.
Flow in baffled stirred vessels involves interactions between flow around rotating impeller blades and stationary baffles. When more than one impeller is used (which is quite common in practice), the flow complexity is greatly increased, especially when there is an interaction between two impellers. The extent of interaction depends on relative distances between the two impellers and clearance from the vessel bottom. In this paper we have simulated flow generated by two Rushton (disc) impellers. A computational snapshot approach was used to simulate single-phase flow experiments carried out by Rutherford et al. (1996). The computational model was mapped on the commercial CFD code FLUENT (Fluent Inc., USA). The simulated results were analyzed in detail to understand flow around impellers and interaction between impellers. The model predictions were verified using the data of Rutherford et al. (1996). The results presented in this paper have significant implications for applications of computational fluid mixing tools for designing multiple impeller stirred reactors.  相似文献   

17.
Mixing times for inelastic shear‐thinning fluids in stirred tanks have been experimentally investigated using a combination of two off‐centred impellers operating in both co‐ and counter‐rotating modes. A colour‐discolouration technique based on fast acid‐base reaction was used for the determination of the mixing times as well as to reveal the possible presence of caverns and dead regions. A statistical plan of experiments allowed determining the effects of the impeller position, the rotational speed, the flow behaviour index, the impeller type and their mutual interactions. A stronger influence of the impeller position on mixing times was observed for both rotating modes with fluids exhibiting pronounced shear‐thinning. It was also found that segregated regions could be readily destroyed by dual off‐centred impellers as compared with the single centred impeller configuration. Mixed flow impellers were shown to be less efficient in terms of mixing times than radial flow impellers. Results obtained under the best operating conditions were compared to steady stirring experiments showing the potential and drawbacks of the proposed scenarios.  相似文献   

18.
多层组合桨搅拌槽内气-液分散特性的研究   总被引:21,自引:4,他引:17  
在直径为0,476m的椭圆底搅拌槽中,采用由六叶半椭圆管叶盘式涡轮桨(HEDT)及四叶宽叶翼型桨的上提(WHU)及下压(WHD)操作组合的六种不同的三层桨,研究了气-液两相体系中的通气功率变化及气含率特性,获得不同桨型的通气搅拌功率及气含率的关联式;结果表明,底桨为HEDT的组合桨通气功率下降幅度最小,相同输入功率时气含率最高,其次为WHD,WHU为底桨时气液分散性能最差。因此,适用于气液两相操作的优化组合桨应以HEDT为底桨。此研究结果可为工业用多层组合桨气液搅拌反应器的设计提供参考。  相似文献   

19.
Despite much research on gas-liquid-solid systems and their widespread application in industry, gas dispersion with solid suspension in multistage stirred reactors equipped with multiple impellers has received little attention. We report here the critical just-suspension impeller speed for different concentrations of solid particles, gas holdup, and shaft power in a vessel of 0.48 m diameter with four baffles and dished base. Five agitator configurations, each with three impellers mounted on a single shaft, have been used in the experiments. Two novel impeller designs were used, a deep hollow blade (semi-ellipse) disc turbine (HEDT) and four-wide-blade hydrofoil impellers. The hydrofoils were used in both up-pumping (WHU) and down-pumping (WHD) modes. Glass beads of 50 ~ 150 μm diameter and density 2500 kg · m?3 were suspended at solid volumetric concentrations of 1.5, 3, 6, 9, and 15%. Results show that these suspended solids have little effect on the relative power demand. Agitators using the HEDT radial dispersing impeller at the bottom have a higher relative power demand (RPD = PG/PU) than those with WHD or WHU as the lowest one. For all impeller combinations there is little or no effect on gas holdup with increasing solid concentrations. Of the five different impeller combinations, those with an axial flow bottom impeller have significantly higher just-suspension agitation speeds and power consumption, so mounting the hydrofoil impeller at the bottom is not the optimal configuration for particle suspension. Of these impeller combinations, at a given gas flow rate the arrangement of HEDT + 2WHU has the highest relative power demand, gas holdup, and power input for both the suspension of settling particles and gas dispersion.  相似文献   

20.
Gas dispersion with large-scale impellers consisting of modified large paddle impellers in stirred tanks, with rather large ratios of both impeller diameter and impeller height to tank diameter, was experimentally examined in transition and turbulent mixing ranges. Gas holdups and volumetric gas-liquid mass transfer coefficients with large-scale impellers, i.e., Maxblend and Fullzone impellers, were measured in 0.31 and 0.6 m I.D. stirred tanks, and the gas dispersion performance of large-scale impellers was compared with that of double conventional small-scale high-speed impeller systems, i.e., double four-flat blade disk turbine impellers and double four-flat paddle impellers.

The gas holdups of the large-scale impellers were comparable with those of the small-scale impeller systems at a given rotational speed. The volumetric gas-liquid mass transfer coefficients for large-scale impellers were also similar to those of the small-scale impeller systems. It was found that the large-scale impellers are not more energy efficient than the small-scale impellers in obtaining good gas dispersion.

Empirical correlations for gas holdups and volumetric gas-liquid mass transfer coefficients were developed. They fit the experimental data in transition and turbulent mixing ranges reasonably well, with correlation factors greater than 0.84.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号