首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The stationary gas tungsten arc welding (GTA) is carried out on SUS304 stainless steel under Ar-0.1%O2 and Ar-0.3%O2 mixed shielding to observe the evolution of the molten pool and investigate the role of Marangoni convection on the weld shape. After welding, the oxygen content in the weld metal was measured by using an oxygen/nitrogen analyzer. Small addition of oxygen to the argon based shielding gas can effectively adjust the weld pool oxygen content. Oxygen plays an important role as an surface active element in determining the pattern of Marangoni convection in the stainless steel weld pool. When the weld metal oxygen content is over the critical value, 0.01 wt pct, corresponding to the Ar-0.3%O2 mixed shielding gas, the Marangoni convection changes from outward to inward direction and the weld shape dramatically changes from wide shallow shape to narrow deep shape.  相似文献   

2.
Double shielded gas tungsten arc welding (GTAW, also known as tungsten inert gas (TIG) welding) of an SUS304 stainless steel with pure inert argon as the inner layer shielding and the Ar-CO2 or CO2 active gas as the out layer shielding was proposed in this study to investigate its effect on the tungsten electrode protection and the weld shape variation. The experimental results showed that the inner inert argon gas can successfully prevent the outer layer active gas from contacting and oxidizing the tungsten electrode during the welding process. Active gas, carbon dioxide, in the outer layer shielding is decomposed in the arc and dissolves in the liquid pool, which effectively adjusts the active element, oxygen, content in the weld metal. When the weld metal oxygen content is over 70×10-6, the surface-tension induced Marangoni convection changes from outward into inward, and the weld shape varies from a wide shallow one to a narrow deep one. The effect of the inner layer gas flow rate on the weld bead morphology and the weld shape was investigated systematically. The results show that when the flow rate of the inner argon shielding gas is too low, the weld bead is easily oxidized and the weld shape is wide and shallow. A heavy continuous oxide layer on the liquid pool is a barrier to the liquid pool movement.  相似文献   

3.
Increasing the oxygen or the carbon dioxide concentration in the argon-based shielding gas leads to an increase in the weld metal oxygen content when the oxygen or carbon dioxide concentration is to be lower than 0.6 vol.% in the shielding gas. However, when the O2 or CO2 concentration is higher than 0.6 vol.% in the Ar-based shielding gas, the weld metal oxygen is maintained around 200 ppm–250 ppm. An inward Marangoni convection mode in the weld pool occurs when the weld metal oxygen content is more than 100 ppm. When it is lower than 100 ppm, the Marangoni convection would change to the outward direction and the weld shape varies from a deep narrow to a shallow wide shape. The effective ranges of O2 and CO2 concentrations for deep penetration are same. A heavy layer of oxides is formed when the O2 or CO2 concentration in the shielding gas is more than 0.6 vol.%. Based on the thermodynamic calculation of the equilibrium reactions of Fe, Si, Cr and Mn with oxygen in liquid iron for the oxide products, FeO, SiO2, Cr2O3 and MnO and the experimental oxygen content in the weld metal, Cr2O3 and SiO2 oxides are possibly formed at the periphery area of the liquid pool surface under the arc column during the welding process. One model is proposed to illustrate the role of the oxide layer on the Marangoni convection on the pool surface at elevated temperature. The heavy oxide layer inhibited the fluid flow induced by the Marangoni convection and also became a barrier for the oxygen absorption into the molten weld pool.  相似文献   

4.
A new type of tungsten inert gas (TIG) welding has been developed, in which an ultra-deep penetration is obtained. In order to control the Marangoni convection induced by the surface tension gradient on the molten pool, He gas containing a small amount of oxidizing gas was used. The effect of the concentration of O2 and CO2 in the shielding gas on the weld shape was studied for the bead-on-plate TIG welding of SUS304 stainless under He–O2 and He–CO2 mixed shielding gases. Because oxygen is a surface active element for stainless steel, the addition of oxygen to the molten pool can control the Marangoni convection from the outward to inward direction on the liquid pool surface. When the oxygen content in the liquid pool is over a critical value, around 70 ppm, the weld shape suddenly changes from a wide shallow shape to a deep narrow shape due to the change in the direction of the Marangoni convection. Also, for He-based shielding gas, a high welding current will strengthen both the inward Marangoni convection on the pool surface and the inward electromagnetic convection in the liquid pool. Accordingly, at a welding speed of 0.75 mm/s, the welding current of 160 A and the electrode gap of 1 mm under the He–0.4%O2 shielding, the depth/width ratio reaches 1.8, which is much larger for Ar–O2 shielding gas (0.7). The effects of the welding parameters, such as welding speed and welding current were also systematically investigated. In addition, a double shielding gas method has been developed to prevent any consumption of the tungsten electrode.  相似文献   

5.
Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding   总被引:3,自引:0,他引:3  
The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally, a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.  相似文献   

6.
目的 研究激光+电弧复合焊中氦−氩混合保护气体成分对电弧等离子体物理特性的影响,从而改善焊接性能。方法 综合考虑角接头几何特性和氦−氩混合保护气体的物理特性,建立氦−氩混合保护气体角接头旋转激光+电弧复合焊电弧行为的数值分析模型。使用FLUENT软件对不同体积比氦−氩保护气体下电弧等离子体的温度场、流场、压力场和电势场进行模拟计算,对比分析保护气体成分改变对电弧等离子体的影响规律,考虑其对焊接性能的影响,并将计算结果与高速摄影试验进行对比,验证数值分析模型的准确性与合理性。结果 保护气体分别为纯Ar、95%Ar+5%He、90%Ar+10%He时,电弧向激光侧偏移收缩,电弧整体形貌被压缩,位置A纵截面处电弧等离子体的峰值温度分别为25 603、25 080、23 904 K,最大流速分别为336.34、334.34、317.58 m/s,压力最大值分别为899.08、943.40、957.67 Pa,电势梯度分别为11.56、12.17、13.18 V。结论 在氦−氩混合保护气体激光+电弧复合焊中,当保护气体中氦气体积分数增加到5%和10%时,随着氦气所占比例的增大,电弧处于动态变化过程,电弧被压缩,等离子体的峰值温度逐渐降低,最大流速下降,电弧压力和电势梯度增大,有利于焊缝熔深的增大。  相似文献   

7.
When using the bottom‐up approach with anisotropic building‐blocks, an important goal is to find simple methods to elaborate nanocomposite materials with a truly macroscopic anisotropy. Here, micrometer size colloidal mesoporous particles with a highly anisotropic rod‐like shape (aspect ratio ≈ 10) have been fabricated from silica (SiO2) and iron oxide (Fe2O3). When dispersed in a solvent, these particles can be easily oriented using a magnetic field (≈200 mT). A macroscopic orientation of the particles is achieved, with their long axis parallel to the field, due to the shape anisotropy of the magnetic component of the particles. The iron oxide nanocrystals are confined inside the porosity and they form columns in the nanochannels. Two different polymorphs of Fe2O3 iron oxide have been stabilized, the superparamagnetic γ‐phase and the rarest multiferroic ε‐phase. The phase transformation between these two polymorphs occurs around 900 °C. Because growth occurs under confinement, a preferred crystallographic orientation of iron oxide is obtained, and structural relationships between the two polymorphs are revealed. These findings open completely new possibilities for the design of macroscopically oriented mesoporous nanocomposites, using such strongly anisotropic Fe2O3/silica particles. Moreover, in the case of the ε‐phase, nanocomposites with original anisotropic magnetic properties are in view.  相似文献   

8.
赵闪闪  尤飞  江智 《包装工程》2019,40(23):236-244
目的为了提高水性油墨的喷墨印刷质量,通过控制喷印工艺参数以获得良好的墨滴形态。方法分析喷印工艺控制的关键参数以及墨滴形态的表征参数,通过单因素工艺参数对墨滴形态影响的实验,分析电压、点火频率和脉冲宽度对墨滴形态各评价指标的影响程度,并运用AHP法构建墨滴形态的质量分析模型;通过多因素工艺参数组合对墨滴形态影响的正交实验,分析各工艺参数与墨滴形态参数之间的关联性,并结合质量评价模型综合评判喷印工艺参数对墨滴形态的影响。结果喷印工艺参数电压、点火频率和脉冲宽度共同影响墨滴形态的质量,脉冲宽度对其影响最大,点火频率次之,电压的影响程度最小,其权重分别为0.462,0.272,0.266。结论水性油墨喷印工艺中,通过合理地控制喷印工艺的关键参数,可以有效地提高墨滴形态质量,从而获得良好的印刷品质量。  相似文献   

9.
自蔓延工艺参数对TiNi合金多孔体孔洞均匀性的影响   总被引:5,自引:0,他引:5  
研究了自蔓延高温合成工艺制备了TiNi合金均匀多也体-人造骨材料的可能性。通过对工艺参数的优化,制备出整体均匀的钛镍合金多孔体,从而证明了应用自蔓延工艺制备TiNi合金多孔的可能性。  相似文献   

10.
对于焊接性较差的碳化硅颗粒增强镁基(SiCp/Mg)复合材料,采用高能激光束进行了焊接.通过选择合适的激光焊工艺参数,可焊成外观成形及性能均良好的焊接接头.激光焊的输出功率(P)、焊接违反(v)、脉冲频率(f)、脉冲宽度(w)对接头强度都有影响,其中尤以激光输出功率与焊接速度的比值,即焊接线能量P/v的影响最大.对于厚度为1mm的对接缝,试验所得最佳工艺参数为:P=170Wv=7.5mm/s,f=30Hz,w=5ms.焊接时使用氢气(Ar)进行保护.所得拉伸强度值为104.3MPa,达到了母材的52%.另外,本文还应用多项式回归法建立了焊接接头拉伸强度与工艺参数关系的数学模型.  相似文献   

11.
采用ASTM-G28B法进行晶间腐蚀试验,分别研究了手工GTAW和手工GMAW对哈氏合金C-276焊缝组织和耐晶间腐蚀性能的影响。结果表明,手工GMAW焊接的C-276合金,焊缝区析出碳化物第二相较多,晶间腐蚀倾向更大。  相似文献   

12.
Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process for aluminium alloy is frequently TIG (tungsten inert gas) welding due to its comparatively easier applicability and better economy.In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. A mathematical model has been developed to predict pitting corrosion potential of pulsed current TIG welded AA6061 aluminium alloy.Factorial experimental design has been used to optimize the experimental conditions. Analysis of variance technique has been used to find out the significant pulsed current parameters. Regression analysis has been used to develop the model. Using the developed model pitting corrosion potential values have been estimated for different combinations of pulsed current parameters and the results are analyzed in detail.  相似文献   

13.
热机械循环方法对训练NiTi合金双程形状记忆效应的影响   总被引:1,自引:0,他引:1  
采用4种典型的热机械循环方法训练获取具有双程形状记忆效应的镍钛合金丝,从双程形状回复量、高温相形状、低温相形状和相变温度的变化等方面系统研究了训练方法对双程形状记忆效应训练效果的影响.结果表明,在不同训练方法中镍钛合金丝被加载应变时所处的物质相态的差异是造成不同训练效果的主要原因,其中在马氏体相变过程中因加栽引入的位错最有利于双程形状记忆效应的形成.  相似文献   

14.
Pure titanium dioxide (TiO2) particle materials were prepared by hydrolyzing titanium tetrachloride (TiCl4). The microstructures of these materials were determined by X-ray diffraction (XRD), accelerated surface area and porosimetry apparatus (BET), and transmission electron microscopy (TEM). The TiO2 materials obtained by calcinations under different temperatures distinctly revealed different microstructures in crystal structure type, surface area, pore size, pore volume and grain size. The relationship between the microstructure of the TiO2 materials and their electrorheological (ER) activity was investigated. Anatase titania particles have better ER performance than rutile titania particles. Amorphous TiO2 materials display higher ER activity than the crystalline titania materials. A large pore volume can be more advantageous in improving the ER effect of a particle material.  相似文献   

15.
研究了热处理对爆炸焊接T2+Q345R复合板组织和性能的影响。结果表明,热处理温度对T2+Q345R复合板的剪切、拉脱、伸长率等影响不明显,650℃以下,复层晶粒度增长缓慢,界面处异种金相组织厚度较爆炸态变化不大;650℃以上,随温度升高,复层晶粒度急剧增长,界面处异种金相组织厚度较爆炸态快速增加。  相似文献   

16.
Ti的硫酸阳极氧化中硫酸的腐蚀性不足以溶解TiO2阻挡层,采用高温、高电压又会使膜纳米孔的孔径大于200 nm,使其应用范围受到限制.采用两步施加电压的方法,对钛阳极进行阳极氧化处理,以期在不同的工艺条件下制备具有不同孔径和孔密度的氧化钛薄膜.使用扫描电子显微镜考察了初始电压、终态电压、电解液温度、氧化时间等工艺参数对阳极氧化钛薄膜形貌的影响.结果表明,初始电压对氧化钛薄膜形貌的影响是通过改变电解液/阻挡层之间的界面条件来实现的;随着阳极氧化时间的延长纳米孔的孔径减小,孔密度增大;提高电解液的温度不影响纳米孔的形成过程,但对氧化钛薄膜的生长过程产生了比较大的影响.  相似文献   

17.
本文采用电熔刚玉、镁铝尖晶石、SiC、球状沥青和Si3N4为主要原料,借助XRD和EDAX分析技术,研究了Si3N4加入量对Al2O3-尖晶石-SiC-C质出铁沟浇注料常温物理性能和抗渣性能的影响。结果表明:随着Si3N4加入量的增加,浇注料的显气孔率变化不大,体积密度逐渐减小,1100℃及1500℃埋炭烧成后的抗折和耐压强度逐渐增大,当Si3N4加入量超过4%(质量分数,下同)时,浇注料的体积密度有所增大,抗折和耐压强度显著提高;浇注料在埋炭气氛下抗渣性能优良,氧化气氛下的侵蚀指数明显增大,且随着Si3N4加入量的增加,浇注料的侵蚀指数呈现出先增大后减小的趋势。本文对浇注料的性能变化进行了探讨。  相似文献   

18.
Zeolitic imidazole frameworks-8 (ZIF-8) is a subclass of metal-organic frameworks (MOFs) with the transition metal cations (Zn2+) linked by imidazolate anions forming tetrahedral frameworks in zeolite-like topologies. This article reports on the synthesis of ZIF-8 nanoparticles by varying the synthesis parameters at room temperature. The crystallization duration, molar ratios, and pH of the mixture solution were varied in order to study the effects of these parameters on the formation of ZIF-8 nanoparticles. The structural and morphology transformation of the resultant particles were characterized using x-ray diffraction, field emission scanning electron microscopy, and Brunauer–Emmett–Teller (BET) surface analysis. The CO2 adsorption characteristics of ZIF-8 nanoparticles were tested using CO2 physisorption analysis. Mature structural evolution was observed for ZIF-8 synthesized at 60 and 1440 min, but insufficient crystallization was found for ZIF-8 synthesized at 5 min. Meanwhile, ZIF-8 nanoparticles synthesized under lower amount of methanol resulted in larger particle size and higher crystallinity. Poorly intergrown ZIF-8 nanoparticles were observed for samples synthesized using a mixture solution with pH 8.2. Although different particle sizes and relative crystallinities were obtained for the ZIF-8 samples, synthesis using different molar ratios of the mixture solution, insignificant variations of BET surface areas, and CO2 adsorption capacities were found.  相似文献   

19.
This paper investigates the impact of N2O plasma treatment on the light-induced instability of InGaZnO thin film transistors with a SiO2 passivation layer deposited by plasma-enhanced-chemical-vapor-deposition (PECVD). For the untreated device, because the deposition of the SiO2 passivation layer by PECVD causes extra trap states, the anomalous subthreshold leakage current can be attributed to a lowering of the source side barrier due to trap-assisted photogenerated holes. In contrast, the N2O plasma treatment applied to both the gate insulator and the active layer effectively suppresses the device instability under illumination. In order to clarify the influence of the N2O plasma treatment, this study investigates a device with treatment of only the gate insulator. This device shows a slight decrease of light-induced subthreshold leakage current. This demonstrates that N2O plasma treatment on IGZO active layer after its deposition is critical in preventing damage from the subsequent SiO2 passivation deposition process. In addition, the instability of threshold voltage (VT) under negative bias illumination stress (NBIS) is significantly improved by the N2O plasma treatment. Furthermore, a different dark recovery rate follows NBIS for untreated and N2O plasma-treated devices, indicating different hole-trapping levels exist in the energy band.  相似文献   

20.
以Al2O3-TiO2-SiO2(ATS)为载体、Ti0.8Zr0.2Ce0.2O2.4(TZC)为催化活性组分, 采用挤出成型法制备系列整体式TZC/ATS及W掺入催化剂样品。研究了W掺入对催化剂TZC/ATS 的氨气选择性催化还原(NH3-SCR)脱除NO活性及抗K2O、CaO等毒性的影响, 比较了Ti0.8Zr0.2Ce0.2W0.08O2.64/ATS(TZCW0.4/ATS)催化剂与V2O5(WO3)/TiO2催化剂的抗K2O、CaO等中毒性能, 并采用N2-BET、XRD、SEM和NH3-TPD等技术手段分别表征了催化剂的比表面积、固相结构、微观形貌及表面酸性。结果表明, 当活性组分中Ti/Zr/Ce/W元素摩尔比为4:1:1:0.4时, TZCW0.4/ATS催化剂NH3-SCR脱除NO的效率最高、稳定性最好。W掺入显著增强了催化剂的抗K2O及CaO毒性能力, 且TZCW0.4/ATS催化剂抗K2O及CaO的中毒能力明显强于V2O5(WO3)/TiO2催化剂。分析表明, W掺入提高了TZCW0.4/ATS催化剂的比表面积, 增加了催化剂的表面酸量, 从而优化了催化剂的脱硝性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号