首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this paper, sufficient conditions are provided for the stability of switched retarded and neutral time‐delay systems with polytopic‐type uncertainties. It is assumed that the delay in the system dynamics is time‐varying and bounded. Parameter‐dependent Lyapunov functionals are employed to obtain criteria for the exponential stability of the system in the form of linear matrix inequality (LMI). Free‐weighting matrices are then provided to express the relationship between the system variables and the terms in the Leibniz–Newton formula. Numerical examples are presented to show the effectiveness of the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, an adaptive fault‐tolerant time‐varying formation control problem for nonlinear multiagent systems with multiple leaders is studied against actuator faults and state‐dependent uncertainties. Simultaneously, the followers form a predefined formation while tracking reference signal determined by the convex combination of the multiple leaders. Based on the neighboring relative information, an adaptive fault‐tolerant formation time‐varying control protocol is constructed to compensate for the influences of actuator faults and model uncertainties. In addition, the updating laws can be adjusted online through the adaptive mechanism, and the proposed control protocol can guarantee that all the signals in the closed‐loop systems are bounded. Lyapunov‐like functions are addressed to prove the stability of multiagent systems. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

3.
This paper investigates the non‐fragile robust control problem for a class of nonlinear networked control systems (NCSs) with long time‐varying delay. Both the uncertain nonlinearity and the controller gain fluctuation enter into the system in random ways, and such randomly occurring nonlinearity and randomly occurring controller gain fluctuation obey certain mutually uncorrelated Bernoulli distributed white noise sequences. A new time‐varying discrete time system model is proposed to describe the NCS. To reduce conservatism arising from modeling time‐varying parts, the time‐varying parts due to the time‐varying delay are treated as a norm‐bounded uncertainty with one nominal point using robust control techniques. Based on the obtained uncertain system model, a regular and an optimal sufficient non‐fragile controllers are derived by applying the Lyapunov stability theory and the linear matrix inequality technique, which render the closed‐loop NCS to be asymptotically stable and guarantee an upper bound of the given performance cost for all admissible uncertainties. Moreover, the existence condition and design method for the non‐fragile stabilizing controllers are also presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper deals with the problem of fault‐tolerant control (FTC) for a class of nonlinear uncertain systems against actuator faults using adaptive logic‐based switching control method. The uncertainties under consideration are assumed to be dominated by a bounding system which is linear in growth in the unmeasurable states but can be a continuous function of the system output, with unknown growth rates. Several types of common actuator faults, e.g., bias, loss‐of‐effectiveness, stuck and hard‐over faults are integrated by a unified fault model. By utilizing a novel adaptive logic‐based switching control scheme, the actuator faults can be detected and automatically accommodated by switching from the stuck actuator to the healthy or even partly losing‐effectiveness one with bias, in the presence of large parametric uncertainty. In particular, two switching logics for updating the gain in the output feedback controllers are designed to ensure the global stability of the nominal (fault‐free) system and the boundedness of all closed‐loop signals of the faulty system, respectively. Two simulation examples of an aircraft wing model and a single‐link flexible‐joint robot are given to show the effectiveness of the proposed FTC controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This article investigates the active fault‐tolerant consensus problem for Lipschitz nonlinear multiagent systems under detailed balanced directed graph and actuator faults. First, a fault detection filter for each agent is designed, and all agents can be divided into two categories: healthy agents and possibly faulty agents. Second, fully distributed adaptive fault‐tolerant consensus protocols for healthy and possibly faulty agents are proposed to achieve state consensus. Third, based on the fault detection method and fault‐tolerant consensus protocols, active fault‐tolerant consensus algorithms are given. Simulation examples are presented to verify the effectiveness of the proposed active fault‐tolerant algorithms.  相似文献   

6.
This article synthesizes a recursive filtering adaptive fault‐tolerant tracking control method for uncertain switched multivariable nonlinear systems. The multivariable nonlinear systems under consideration have both matched and mismatched uncertainties, which satisfy the semiglobal Lipschitz condition. A piecewise constant adaptive law generates adaptive parameters by solving the error dynamics with the neglection of unknowns, and the recursive least squares is employed to minimize the residual error by categorizing the total uncertainty estimates into matched and mismatched components. A filtering control law is designed to compensate the actuator faults and nonlinear uncertainties such that a good tracking performance is delivered with guaranteed robustness. The matched component is canceled directly by adopting their opposite in the control signal, whereas a dynamic inversion of the system is performed to eliminate the effect of the mismatched component on the output. By exploiting the average dwell time principle, the error bounds are derived for the states and control inputs compared with the virtual reference system which defines the best performance that can be achieved by the closed‐loop system. Both numerical and practical examples are provided to illustrate the effectiveness of the proposed switching recursive filtering adaptive fault‐tolerant tracking control architecture, comparisons with model reference adaptive control are also carried out.  相似文献   

7.
In this paper, the problem of robust adaptive fault‐tolerant tracking control with time‐varying performance bounds is investigated for a class of linear systems subject to parameter uncertainties, external disturbances and actuator failures. In order to ensure the norm of the tracking error less than the user‐defined time‐varying performance bounds, we propose a new control strategy which is predicated on the generalized restricted potential function. Compared with the existing result, a novel method which provides two design freedoms is developed to reduce the tracking error. According to the online estimation information provided by adaptive mechanism, a fault‐tolerant tracking control method guaranteeing time‐varying performance bounds is developed for robust tracking of reference model. It is shown that the closed‐loop signals are bounded and the tracking error within an a priori given, time‐varying performance bounds. A simulation result is provided to demonstrate the efficacy of the proposed fault‐tolerant tracking control method.  相似文献   

8.
This study deals with the problem of robust adaptive fault‐tolerant tracking for uncertain systems with multiple delayed state perturbations, mismatched parameter uncertainties, external disturbances, and actuator faults including loss of effectiveness, outage, and stuck. It is assumed that the upper bounds of the delayed state perturbations, the external disturbances and the unparameterizable time‐varying stuck faults are unknown. Then, by estimating online such unknown bounds and on the basis of the updated values of these unknown bounds from the adaptive mechanism, a class of memoryless state feedback fault‐tolerant controller with switching signal function is constructed for robust tracking of dynamical signals. Furthermore, by making use of the proposed adaptive robust tracking controller, the tracking error can be guaranteed to be asymptotically zero in spite of multiple delayed state perturbations, mismatched parameter uncertainties, external disturbances, and actuator faults. In addition, it is also proved that the solutions with tracking error of resulting adaptive closed‐loop system are uniformly bounded. Finally, a simulation example for B747‐100/200 aircraft system is provided to illustrate the efficiency of the proposed fault‐tolerant design approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the security‐guaranteed filtering problem is studied for a class of nonlinear stochastic discrete time‐delay systems with randomly occurring sensor saturations (ROSSs) and randomly occurring deception attacks (RODAs). The nonlinearities in systems satisfy the sector‐bounded conditions, and the time‐varying delays are unknown with given lower and upper bounds. A novel measurement output model is proposed to reflect both the ROSSs and the RODAs. A new definition is put forward on the security level with respect to the noise intensity, the energy bound of the false signals, the energy of the initial system state, and the desired security degree. We aim at designing a filter such that, in the presence of ROSSs and RODAs, the filtering error dynamics achieves the prescribed level of security. By using the stochastic analysis techniques, a sufficient condition is first derived under which the filtering error system is guaranteed to have the desired security level, and then, the filter gain is designed by solving a linear matrix inequality with nonlinear constraints. Finally, a numerical example is provided to demonstrate the feasibility of the proposed filtering scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper considers a delay‐dependent and parameter‐dependent robust stability criterion for stochastic time‐delay systems with polytopic uncertainties. The delay‐dependent robust stability criterion, as expressed in terms of linear matrix inequalities (LMIs), is obtained by using parameter‐dependent Lyapunov functions. It is shown that the result derived by a parameter‐dependent Lyapunov functional is less conservative. Numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the robust H control problem for stochastic systems with a delay in the state. Sufficient delay‐dependent conditions for the existence of state‐feedback controllers are proposed to guarantee mean‐square asymptotic stability as well as the prescribed H performance for the closed‐loop systems. Moreover, the results are further extended to the stochastic time‐delay systems with parameter uncertainties, which are assumed to be time‐varying norm‐bounded appearing in both the state and the input matrices. The appealing idea is to partition the delay, which differs greatly from the most existing results and reduces conservatism by thinning the delay partitioning. Numerical examples are provided to show the advantages of the proposed techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is concerned with the state feedback control problem for a class of two-dimensional (2D) discrete-time stochastic systems with time-delays, randomly occurring uncertainties and nonlinearities. Both the sector-like nonlinearities and the norm-bounded uncertainties enter into the system in random ways, and such randomly occurring uncertainties and nonlinearities obey certain mutually uncorrelated Bernoulli random binary distribution laws. Sufficient computationally tractable linear matrix inequality–based conditions are established for the 2D nonlinear stochastic time-delay systems to be asymptotically stable in the mean-square sense, and then the explicit expression of the desired controller gains is derived. An illustrative example is provided to show the usefulness and effectiveness of the proposed method.  相似文献   

13.
研究随机非确定线性多智能体系统在有向拓扑连接下的指数同步问题,为减少不必要的网络带宽资源的浪费,提出一种基于事件触发控制的协议。根据组合测量对系统中的所有节点设计相应的事件触发函数,使得节点之间的控制信号更新仅在事件触发时刻进行。基于Lyapunov稳定性理论和M矩阵理论,得到了多智能体系统指数同步结论,并给出了同步的收敛速度。同时,理论排除了事件触发控制过程中的芝诺(Zeno)现象。数值仿真结果进一步验证了理论分析的有效性。  相似文献   

14.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the state estimation problem is investigated for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays. The norm-bounded uncertainties enter into the system in a randomly way, and such randomly occurring uncertainties (ROUs) obey certain Bernoulli distributed white noise sequence with known conditional probability. By constructing a new Lyapunov–Krasovskii functional, sufficient conditions are proposed to guarantee the convergence of the estimation error for all discrete time-varying delays, ROUs and distributed sensor delays. Subsequently, the explicit form of the estimator parameter is derived by solving two linear matrix inequalities (LMIs) which can be easily tested by using standard numerical software. Finally, a simulation example is given to illustrate the feasibility and effectiveness of the proposed estimation scheme.  相似文献   

16.
17.
In this paper, the H output feedback control problem for a class of stochastic discrete‐time systems with randomly occurring convex‐bounded uncertainties and channel fadings is investigated. A sequence of mutually independent random variables with known probabilistic distributions are utilized to describe the randomness that convex‐bounded uncertainties appear in practical systems. The measurements with channel fadings are given by a stochastic Rice fading model which is regulated by a set of random variables with certain probability density functions. The purpose of this paper is to design an output feedback controller such that the closed‐loop control system is asymptotically stable with a prescribed H performance level. The less conservative results are obtained by employing the stochastic Lyapunov technique. Numerical examples are presented to illustrate effectiveness of the proposed approach.  相似文献   

18.
This paper aims to solve the H stabilization problem for networked semi‐Markovian jump systems subject to randomly occurring uncertainties by an improved event‐triggered technique. A new measurement error that is defined as the difference value between the latest transmitted data and the mean value of both current data and latest transmitted data is introduced into the event‐triggered condition. Compared with traditional dynamic event‐triggered scheme, more unexpected data could be avoided to be transmitted, which is demonstrated in the simulation through sufficient comparison experiments. Furthermore, by employing a Lyapunov‐Krasovskii functional method and a free‐weighting matrix method, sufficient conditions are derived to guarantee the stabilization of the closed‐loop semi‐Markovian jump time‐delay system with uncertainties and a prescribed performance index. Then, a codesign method for H controller gains and event‐triggered parameters is presented. Finally, simulations are given to verify the effectiveness of our improved dynamic event‐triggered scheme.  相似文献   

19.
This paper investigates the problem of state observer design for a class of nonlinear uncertain dynamical systems with interval time‐varying delay and the one‐sided Lipschitz condition. By constructing the novel Lyapunov–Krasovskii functional while utilizing the free‐weighting matrices approach, the one‐sided Lipschitz condition and the quadratic inner‐bounded condition, novel sufficient conditions, which guarantee the observer error converge asymptotically to zero, are established for a class of nonlinear dynamical systems with interval time‐varying delay in terms of the linear matrix inequalities. The computing method for observer gain matrix is given. Finally, two examples illustrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, we present a novel adaptive finite‐time fault‐tolerant control algorithm for a class of multi‐input multi‐output nonlinear systems with constraint requirement on the system output tracking error. Both parametric and nonparametric system uncertainties can be effectively dealt with by the proposed control scheme. The gain functions of the nonlinear systems under discussion, especially the control input gain function, can be not fully known and state‐dependent. Backstepping design with a tan‐type barrier Lyapunov function and a new structure of stabilizing function is presented. We show that under the proposed control scheme, finite‐time convergence of the output tracking error into a small set around zero is guaranteed, while the constraint requirement on the system output tracking error will not be violated during operation. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号