首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Road crossings can act as barriers to the movement of stream fishes, resulting in habitat fragmentation, reduced population resilience to environmental disturbance and higher risks of extinction. Strategic barrier removal has the potential to improve connectivity in stream networks, but managers lack a consistent framework for determining which projects will most benefit target species. The objective of this study is to develop a method for identifying and prioritizing action on road crossings in order to restore stream network connectivity. We demonstrate the method using a case study from the Pine‐Popple watershed in Wisconsin. First, we propose a new metric for quantifying stream connectivity status for stream‐resident fish. The metric quantifies the individual and cumulative effects of barriers on reach and watershed level connectivity, while accounting for natural barriers, distance‐based dispersal limitations and variation in habitat type and quality. We conducted a comprehensive field survey of road crossings in the watershed to identify barriers and estimate replacement costs. Of the 190 surveyed road crossings, 74% were determined to be barriers to the movement of at least one species or life stage of fish, primarily due to high water velocity, low water depth or outlet drops. The results of the barrier removal prioritization show that initial projects targeted for mitigation create much greater improvements in connectivity per unit cost than later projects. Benefit–cost curves from this type of analysis can be used to evaluate potential projects within and among watersheds and minimize overall expenditures for specified restoration targets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Traditional box culvert designs lead to development of high velocity zones in the culvert barrel that often impede upstream migration of fish. Herein, three‐dimensional Reynolds‐averaged Navier‐Stokes (RANS)‐ and Large eddy simulation (LES)‐based computational fluid dynamics (CFDs) simulations were performed to compare the effectiveness of smooth, asymmetrically roughened, and corner‐baffled barrels, in creating low‐velocity zones (LVZs) and providing opportunity for upstream passage of small‐bodied fish. The results revealed distinctive benefits provided by the asymmetrically roughened and corner‐baffled barrels relative to the smooth barrel. Cross‐sectional asymmetry, corners, and obstructions are important factors that contribute to the generation of LVZs conducive to fish passage, albeit contiguity of LVZs is required, particularly for weak swimmers. The study demonstrates the adequacy and effectiveness of CFD models to complement traditional laboratory studies in understanding basic mechanisms beneficial to fish passage and to provide insights into future designs.  相似文献   

3.
Hydropower barriers are among the most conspicuous anthropogenic alterations to natural riverine connectivity, resulting in species‐specific effects linked to dispersal abilities, especially swimming performance. They may present a particular problem for small‐bodied ‘non‐sport fish’, such as those that characterize the freshwater communities of temperate regions in the Southern Hemisphere. Recent studies have suggested that nature‐like fishways could ensure passage of diverse fish assemblages through hydropower barriers. Through experiments performed in a swim tunnel, we present, for the first time, fishway design criteria for two non‐sport species endemic to Chile, a country experiencing rapid hydropower development. In`cremental velocity tests showed that Cheirodon galusdae and juveniles of Basilichthys microlepidotus were capable of very similar standardized critical swimming speeds of 69.7 and 69.6 cm s?1, respectively. When expressed in units of body lengths, C. galusdae was capable of very high critical speeds of 16.2 bl s?1, whereas for B. microlepidotus, this was 7.6 bl s?1. However, fixed velocity tests revealed that the swimming endurance of the latter species was slightly higher. Dimensionless analysis showed a clear relationship between fatigue time and fish Froude number, similar to that already described for subcarangiforms. Based on these results, we present fishway design curves indicating a transition from sustained to prolonged swimming at a fishway length of 15 m. Our results show that the swimming capacity of these species is well‐suited to the mean flow velocity field described for nature‐like fishways. However, more work is required to understand the effects of turbulence on the passage of non‐sport species. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Stream habitat restoration is an important tool for fisheries management in impaired lotic systems. Although small‐scale benefits of stream habitat restoration are commonly investigated, it is difficult to demonstrate population effects. The Pahsimeroi River Chinook salmon Oncorhynchus tshawytscha population was previously restricted to the lower portion of the river by multiple irrigation structures. To address fish passage issues, a combination of restoration projects was initiated including barrier removals, instream flow enhancements and installation of fish screens on diversions. The largest barrier was removed in 2009, more than doubling the amount of accessible linear habitat. We hypothesized restoration efforts would expand the distribution of spawning salmon in the Pahsimeroi River watershed, leading to a broader distribution of juveniles. We also hypothesized a broader juvenile distribution would have population effects by reducing the prevalence of density‐dependent growth and survival. Redds were documented in newly accessible habitat immediately following barrier removal and accounted for a median of 42% of all redds in the Pahsimeroi River watershed during 2009–2015. Snorkel surveys also documented juvenile rearing in newly accessible habitat. Juvenile productivity increased from a median of 64 smolts/female spawner for brood years 2002–2008 to 99 smolts/female spawner for brood years 2009–2014. Overall, results suggested increased habitat accessibility in the Pahsimeroi River broadened the distribution of spawning adult and rearing juvenile salmon and reduced the effects of density‐dependent survival. Large‐scale stream restoration efforts can have a population effect. Despite the large‐scale effort and response, habitat restoration alone is likely not sufficient to restore this population.  相似文献   

5.
We assessed the similarity of fish communities among river reaches to assess community‐level fragmentation by low‐head dams in the Upper Mississippi River System (UMRS). The spatial coverage of standardized electrofishing sampling used in the Long Term Resource Monitoring Program (LTRMP) was extended for three of the six regional trend areas (RTA; pools 4, 13, and the Open River Reach) to include river reaches (outpools) immediately upstream and downstream from the standard RTA from 15 June to 31 October 2000. Additionally, pools 19 and 20 were sampled in September 2000. Cluster analysis and non‐metric multidimensional scaling of community composition and structure data revealed two major groups, upper and lower reaches, and four (for composition) or five (for structure) sub‐groupings of river reaches. In general, all outpools grouped with the nearest RTA for both community composition (no exception) and community structure (one exception). This suggests that fragmentation of fish communities from low‐head dams is minimal. Mantel correlations demonstrated strong inverse association between the similarity of fish communities with the distance between reaches. Habitat variables measured during electrofishing collections were significantly correlated with spatial variation of fish composition and community structure, but provided only marginal improvements to correlations with distance between reaches alone. Furthermore, habitat variability among river reaches also was related to distance between reaches. Determining the extent to which variation of fish communities is related to habitat or demographic processes (e.g. migration, larval drift, source‐sink dynamics) will be challenging for this system. Although low‐head dams on the UMRS may restrict movements for individuals and populations of certain fish species, we found little evidence that these effects have led to substantial, community‐level fragmentation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In river systems, high‐head dams may increase the distance‐decay of fish community similarity by creating nearly impermeable dispersal barriers to certain species from upstream reaches. Substantial evidence suggests that migratory species are impacted by dams, and most previous studies in stream/river networks have focused on small streams and headwaters. Here, we assess whether a high‐head dam (Lock and Dam 19; LD 19) on a large river, the Upper Mississippi River (UMR), substantially alters fish community structure relative to variability expected to occur independent of the dam's effect as a fish dispersal barrier. Using fish catch per unit effort data, we modelled the distance‐decay function for the UMR fish community and then estimated the similarity that would be expected to occur across LD19 and compared it with measured similarity. Measured similarity in the fish community above and below LD19 was close to the expected value based on the distance‐decay function, suggesting LD19 does not create an abrupt transition in the fish community. Although some migratory fish species no longer occur above LD19 (e.g., skipjack herring, Alosa chrysochloris), these species do not occur in high abundance below the dam and so do not drive variation in fish community structure. Instead, much of the variation in species structure is driven by the loss/gain of species across the latitudinal gradient. Lock and Dam 19 does not appear to be a clear transition point in the river's fish community, although it may function as a meaningful barrier for particular species (e.g., invasive species) and warrant future attention from a management perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号