首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Singh  A. K. Gosain 《国际水》2013,38(3):386-397
A GIS-based Soil and Water Assessment Tool (SWAT) model is used to assess the impacts of climate change on the hydrological regime of the Cauvery river basin. First, the impact of changes in land-management practices on water availability under present conditions is modelled. Then, the same analysis is carried out under the future climatic scenarios. Finally, annual and monthly precipitation variability is compared under present, as well as future, climate-change scenarios. The results indicate an intensification of the hydrological cycle in the future climate-change scenario that appears to be significant on an annual basis.  相似文献   

2.
In achieving the final objective of the European Water Framework Directive, the evaluation of the ‘hydrological status’ of a water body in a catchment is of the utmost importance. It represents the divergence of the actual hydrological regime from its ‘natural’ condition and may thus provide crucial information about the ecological status of a river. In this paper, a new approach in evaluating the hydrological status of a temporary river was tested. The flow regime of a river has been classified through the analysis of two metrics: the permanence of flow and the predictability of no‐flow conditions that were evaluated on monthly streamflow data. This method was applied to the Candelaro river basin (Puglia, Italy) where we had to face the problem of limited data availability. The Soil and Water Assessment Tool model was used when streamflow data were not available, and a geographic information system procedure was applied to estimate potential water abstractions from the river. Four types of rivers were identified whose regimes may exert a control on aquatic life. By using the two metrics as coordinates in a plot, a graphic representation of the regime can be visualized in a point. Hydrological perturbations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the position of the two points representing the regime before and after the impacts. The method is intended to be used with biological metrics in order to define the ecological status of a stream, and it could also be used in planning the ‘measures’ aimed at fulfilling the Water Framework Directive goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Rivers are hierarchical systems exhibiting processes and patterns across spatial and temporal scales principally driven by changes in flow. Hydrological indices estimated with mean or median daily flow data (i.e. daily scale) may be insensitive to anthropogenic alteration that imparts sub‐daily variation to flow. Therefore, indices developed at multiple temporal resolutions may provide additional insight into the presence of flow patterns masked by traditional techniques. We characterized the flow regime along the longitudinal gradient of the Platte River, a large Great Plains USA river, using hydrological indices derived with mean daily and sub‐daily flow data and a combination of multivariate statistical techniques. Three unique flow units were evident using daily scale flow data, whereas six unique flow units were evident at the sub‐daily scale. Flow units at both scales were not static, but rather the presence and extent of flow units across the riverscape depended on climate, tributary inflows and human influence. Anthropogenic alteration including hydropeaking was evident at the sub‐daily scale but not at the daily scale. The full complement of flow structure within regulated rivers, therefore, may not be captured using mean or median daily discharge values alone. Inductive river classification studies may benefit from assessing hydrological indices at multiple scales, particularly when investigating river systems with anthropogenic modification such as hydropeaking. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.

Hydrological drought is assessed through river flow, which depends on river runoff and water withdrawal. This study proposed a framework to project future hydrological droughts considering agricultural water withdrawal (AWW) for shared socioeconomic pathway (SSP) scenarios. The relationship between AWW and potential evapotranspiration (PET) was determined using a deep belief network (DBN) model and then applied to estimate future AWW using projections of the twelve global climate models (GCMs). 12 GCMs were bias-corrected using the quantile mapping method, climate variables were generated, and river flow was estimated using the soil and water assessment tool (SWAT) model. The standardized runoff index (SRI) was used to project the changes in hydrological drought characteristics. The results revealed a higher occurrence of severe droughts in the future. Droughts would be more frequent in the near future (2021–2060) than in the far future (2061–2100) and more severe when AWW is considered. Droughts would also be more severe for SSP5-8.5 than for SSP2-4.5. The study revealed that the increased PET due to rising temperatures is the primary cause of the increased drought frequency and severity. The AWW will accelerate the drought severities in the future in the Yeongsan River basin.

  相似文献   

5.
The use of regional climate model (RCM) outputs has been getting due attention in most European River basins because of the availability of large number of the models and modelling institutes in the continent; and the relative robustness the models to represent local climate. This paper presents the hydrological responses to climate change in the Upper Tiber River basin (Central Italy) using bias corrected daily regional climate model outputs. The hydrological analysis include both control (1961–1990) and future (2071–2100) climate scenarios. Three RCMs (RegCM, RCAO, and PROMES) that were forced by the same lateral boundary condition under A2 and B2 emission scenarios were used in this study. The projected climate variables from bias corrected models have shown that the precipitation and temperature tends to decrease and increase in summer season, respectively. The impact of climate change on the hydrology of the river basin was predicted using physically based Soil and Water Assessment Tool (SWAT). The SWAT model was first calibrated and validated using observed datasets at the sub-basin outlet. A total of six simulations were performed under each scenario and RCM combinations. The simulated result indicated that there is a significant annual and seasonal change in the hydrological water balance components. The annual water balance of the study area showed a decrease in surface runoff, aquifer recharge and total basin water yield under A2 scenario for RegCM and RCAO RCMs and an increase in PROMES RCM under B2 scenario. The overall hydrological behaviour of the basin indicated that there will be a reduction of water yield in the basin due to projected changes in temperature and precipitation. The changes in all other hydrological components are in agreement with the change in projected precipitation and temperature.  相似文献   

6.
通过分析北江石角站实测径流资料,应用变化范围法(RVA)评估北江流域水文情势变化.认为总体上属低改变度到中改变度阶段,个别指标达到高改变度;干支流径流式水库,其枯水期运行调度对北江流域水文情势影响较大,而汛期运行调度对水文情势影响较小;飞来峡水库运行对北江中下游水文情势的改变幅度不大,但个别水文改变指标(IHA)改变度较高,有必要进一步优化飞来峡水库调度方案,减轻对北江河流自然生态的破坏,把IHA改变度降至最低,实现人水和谐.  相似文献   

7.
Interactions between climate change and urbanization may affect stream ecosystems in unexpected ways. With an integrated modelling framework, we assessed the combined hydrological impacts of climate change and urbanization under historical and future climate regimes across varied development scenarios in three watersheds in the Willamette Valley, Oregon. First, through an agent‐based land use change model Envision, we created four development scenarios that consisted of 2 × 2 combinations of regional growth (compact population growth in urban cores vs. dispersed growth into rural areas) and stormwater management scenarios (with vs. without integrated stormwater management, ISM). ISM was defined as the integration of strategic organization of land uses with site‐scale stormwater best management practices. Next, two future climate regimes were developed by statistically downscaling projections from two general circulation models (CanESM2 and CNRM‐CM5) that performed well in replicating historical climate. The hydrological assessment of these scenarios was then conducted with the Soil and Water Assessment Tool. Using 10 ecologically significant flow metrics, we evaluated each scenario based on the magnitude of change in each metric and the degree to which such changes could be mitigated. Climate change alone led to a drying trend in flow regimes under both future climates. Combined with urbanization, it magnified changes in six of 10 metrics but attenuated impacts for three other measures of flashiness in at least one basin. The combination of compact growth and ISM effectively mitigated alterations for seven (out of nine) metrics sensitive to the combined impacts in at least one basin, with ISM being more effective than compact growth. The modelling framework teased out both nuanced differences and generalizable trends in hydrological impacts of urbanization and climate change and offers key methodological innovations towards an integrated framework capable of linking landscape planning mechanisms with the goal of sustaining stream ecosystem health.  相似文献   

8.
Alterations to flow regimes from regulation and climatic change both affect the biophysical functioning of rivers over long time periods and large spatial areas. Historically, however, the effects of these flow alteration drivers have been studied separately. In this study, results from unregulated and regulated river management models were assessed to understand how flow regime alterations from river regulation differ under future climate conditions in the Sierra Nevada of California, USA. Four representative flow alteration metrics—mean annual flow, low flow duration, centroid timing and mean weekly rate of decrease—were calculated and statistically characterized under historical and future unregulated and regulated conditions over a 20‐year period at each of the eight regulated river locations below dams across the Sierra Nevada. Future climatic conditions were represented by assuming an increase in air temperature of 6 °C above historical (1981–2000) air temperatures, with no change in other meteorological conditions. Results indicate that climate warming will measurably alter some aspects of the flow regime. By comparison, however, river regulation with business‐as‐usual operations will alter flow regimes much more than climate warming. Existing reservoirs can possibly be used to dampen the anticipated effects of climate warming through improved operations, though additional research is needed to identify the full suite of such possibilities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Projection of future changes in river flow regimes and their impact on river ecosystem health is a major research challenge. This paper assesses the implications of projected future shifts in river flows on in‐stream and riparian ecosystems at the pan‐European scale by developing a new methodology to quantify ecological risk due to flow alteration (ERFA). The river network was modelled as 33 668 cells (5′ longitude × 5′ latitude). For each cell, modelled monthly flows were generated for an ensemble of 10 scenarios for the 2050s and for the study baseline (naturalized flows for 1961–1990). These future scenarios consist of combinations of two climate scenarios and four socio‐economic water‐use scenarios (with a main driver of economy, policy, security or sustainability). Environmental flow implications are assessed using the new ERFA methodology, based on a set of monthly flow regime indicators (MFRIs). Differences in MFRIs between scenarios and baseline are calculated to derive ERFA classes (no, low, medium and high risk), which are based on the number of indicators significantly different from the baseline. ERFA classes are presented as colour‐coded pan‐European maps. Results are consistent between scenarios and show that European river ecosystems are under significant threat with about two‐thirds at medium or high risk of change. Four main zones were identified (from highest to lowest risk severity): (i) Mediterranean rim, southwest part of Eastern Europe and Western Asia; (ii) Northern Europe and northeast part of Eastern Europe; (iii) Western and Eastern Europe; and (iv) inland North Africa. Patterns of flow alteration risk are driven by climate‐induced change, with socio‐economics as a secondary factor. These flow alterations could be manifested as changes to species and communities, and loss of current ecosystem functions and services. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee–Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river–floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee–Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee–Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre‐large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability of the river to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river ecosystems might experience under future climates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Human activities and climatic change have greatly impacted hydrological cycles and water resources planning in the Yellow River basin. In order to assess these impacts, a semi-distributed monthly water balance model was proposed and developed to simulate and predict the hydrological processes in the middle and lower Yellow River basin. GIS techniques were used as a tool to analyze topography, river networks, land-use, human activities, vegetation, and soil characteristics. The model parameters were calibrated in 35 gauged sub-basins in the middle Yellow River, and then the relationships between the model parameters and the basin physical characteristics were established. A parameterization scheme was developed in which the model parameters were estimated for each grid element by regression and optimization methods. Based on the different outputs of general circulation models (GCMs) and regional climate models (RCMs), the sensitivities to global warming of hydrology and water resources for the Yellow River basin were studied. The proposed models are capable of producing both the magnitude and timing of runoff and water resources conditions. The runoffs are found to be very sensitive to temperature increases and rainfall decreases. Results of the study also indicated that runoff is more sensitive to variation in precipitation than to increase in temperature. The additional uncertainty of climate change has posed a challenge to the existing water resources management practices, and the integration of water resources management will be necessary to enhance the water use efficiency in the Yellow River basin.  相似文献   

14.
Today's water systems require integrated water resource management to improve the water supply for conflicting water uses. This research explores alternative policies to improve the water supply for two conflicting uses, hydropower and environmental, using the Leishui River basin and Dongjiang reservoir as a case study. First, the natural flow regime prior to reservoir construction (pre‐1992) was estimated by performing a statistical analysis of 41 years of daily streamflow data (March 1952–February 1993). This natural flow regime was used as a template for proposing environmental flow (e‐flow) requirements. The post‐reservoir flow regime (post‐1992) (March 1993–February 2011) was analysed to estimate the streamflow alteration. Results show that the natural flow regime has been completely transformed; post‐1992 winter normal flows are greater, and summer flows are smaller than pre‐1992 conditions. Also, the occurrence of natural floods has been prevented. Second, a planning model was built of the current operation of the Dongjiang reservoir and used for comparison of four alternative water management policies that considered e‐flow releases from the Dongjiang reservoir. The scenarios that considered combinations of the current operational policy and e‐flow releases performed better in terms of hydropower generation than the current operation. Different volumes of e‐flow requirements were tested, and an annual e‐flow volume of 75% of the pre‐1992 hydrograph was determined to generate the most hydropower while providing for environmental water needs. Trade‐offs are essential to balance these two water management objectives, and compromises have to be made for both water uses to obtain benefits. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Existing hydrological approaches to support the determination of environmental water requirements (EWRs) were largely developed for perennial rivers and may not be applicable to ephemeral rivers, where the quantity and quality dynamics of pool storage and frequency of connection can be more important than flow rates. The current understanding of semi‐arid hydrological processes and how best to apply hydrological models in ephemeral systems is less well developed than for more humid regions. The paper reports on the application of monthly and daily time‐step rainfall‐runoff models to simulating the hydrology (including pool storage) of the Seekoei River basin, a tributary of the Orange River in the Northern Province, South Africa. The hydrological response of the basin is spatially variable, a relatively small part of the basin generating a large proportion of the total stream flow. The outputs from the hydrological models have been used as inputs to a simple water quality mass balance model designed to simulate the total dissolved solids (TDS) of both flow and pool storage. The results from both the water quantity and quality models are encouraging when compared with the available observed data. While there are no data to confirm the simulation results at sub‐basin scales, they do appear to be conceptually acceptable. The conclusion is that the results are adequate to support ecological studies in the determination of EWRs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This study investigates the water availability scenario along Tokyo Metropolitan Area (TMA) under future climatic changes. TMA, which depends largely on the adjacent Tone river for its water supply, suffers from water shortage almost once in 2–3 yr. A methodology was developed considering integrated approach to ascertain probable impact of climatic changes on the overall water availability along the Tone river and its impact on TMA. Historical trend in hydro-climatic characteristics of the Tone River basin was investigated at the first place to assess the changes and interrelationships. A deterministic water balance model was later developed, integrating natural hydrological balance as well as several water uses and river regulation effects. The natural water balance part of the model was tested for some hypothetical climate change scenarios to observe the sensitivity of the Tone river flow to climatic perturbations. For the worst scenario of precipitation and temperature changes, the unregulated Tone river flow was observed to be reduced by around 20–50%, varying over different months. After considering river regulation effects from reservoirs and diversion, the regulated flow was further analyzed based on some risk indices. Drought risk was observed to be increased significantly for the periods between April–July.  相似文献   

17.
河流生态系统研究的理论框架   总被引:16,自引:4,他引:12  
讨论了河流生态系统的时空尺度。论述了景观、流域、河流廊道和河段4种空间尺度间的关系。阐述了河流生态系统的4种背景系统,即自然系统、经济系统、社会系统和工程系统。归纳了水文情势、河流地貌、流态和水质等4个主要生境要素。在此基础上进一步讨论了科学范式和模型的概念,介绍了多种重要生态系统结构与功能模型,提出了描述非生命变量和生命变量之间关系的河流生态系统结构与功能整体模型。最后,探讨了科学研究对于制定流域管理战略的意义以及相关技术开发的方向。  相似文献   

18.
Impact of Human Intervention and Climate Change on Natural Flow Regime   总被引:1,自引:0,他引:1  
According to the ‘natural flow paradigm’, any departure from the natural flow condition will alter the river ecosystem. River flow regimes have been modified by anthropogenic interventions and climate change is further expected to affect the biotic interactions and the distribution of stream biota by altering streamflow. This study aims to evaluate the hydrologic alteration caused by dam construction and climatic changes in a mesoscale river basin, which is prone to both droughts and monsoonal floods. To analyse the natural flow regime, 15 years of observed streamflow (1950–1965) prior to dam construction is used. Future flow regime is simulated by a calibrated hydrological model Soil and Water Assessment Tool (SWAT), using ensemble of four high resolution (~25 km) Regional Climate Model (RCM) simulations for the near future (2021–2050) based on the SRES A1B scenario. Finally, to quantify the hydrological alterations of different flow characteristics, the Indicators of Hydrological Alteration (IHA) program based on the Range of Variability Approach (RVA) is used. This approach enables the assessment of ecologically sensitive streamflow parameters for the pre- and post-impact periods in the regions where availability of long-term ecological data is a limiting factor. Results indicate that flow variability has been significantly reduced due to dam construction with high flows being absorbed and pre-monsoon low flows being enhanced by the reservoir. Climate change alone may reduce high peak flows while a combination of dam and climate change may significantly reduce variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. We find that, in the Kangsabati River basin, influence of dam is greater than that of the climate change, thereby emphasizing the significance of direct human intervention.  相似文献   

19.
基于分布式流域水文模型EasyDHM,根据汉江流域不同区域的特点,运用长系列水文实测资料,建立了流域分布式水文模型。在汉江流域水文模拟基础上,分析了1980年、1995年和2000年土地利用情境下,流域气候条件和土地利用的变化对流域水资源响应关系。  相似文献   

20.
Growing water demand across the world is increasing the stress on river ecosystems, causing concern for both biodiversity and people. River‐specific environmental flow assessments cannot keep pace with the rate and geographic extent of water development. Society needs methods to assess ecological impacts of flow management at broad scales so that appropriate regional management can be implemented. To meet this need in Colorado, USA, we developed a Watershed Flow Evaluation Tool (WFET) to estimate flow‐related ecological risk at a regional scale. The WFET entails four steps: (i) modelling natural and developed daily streamflows; (ii) analysing the resulting flow time series; (iii) describing relationships between river attributes and flow metrics (flow–ecology relationships); and (iv) mapping of flow‐related risk for trout, native warm‐water species and riparian plant communities. We developed this tool in two watersheds with differing geomorphic settings and data availability. In one of the two watersheds, the WFET was successfully implemented to assess ecological risk across the 3400‐km2 watershed, providing consistent watershed‐wide information on flow‐related risk. In the other watershed, active channel change and limited data precluded a successful application. In Colorado, the WFET will be used to evaluate the risk of impacts on river ecosystems under future climate change and water development scenarios (e.g. for energy development or municipal water supply). As water continues to be developed for people, the WFET and similar methods will provide a cost‐effective means to evaluate and balance ecosystem needs at large scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号