首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sediment flushing may be effective to tackle the loss of reservoir storage as a result of siltation. When operationally possible, the impact of this practice on the downstream aquatic environment can be mitigated by limiting the sediment concentration of the discharged waters (controlled sediment flushing). However, this topic is poorly documented, and concerns arise when limits are discussed. We present the results of a 3‐year field investigation concerning the controlled sediment flushing of a small reservoir on the Adda River, the main tributary of Lake Como—Italy. Two limits for suspended solid concentration (SSC) were adopted: 1.5 g L?1, as average value throughout the whole working day, and 3.0 g L?1, as alert threshold to adjust the ongoing activity. These constraints were essentially fulfilled in the course of the documented operations. The first year sediment flushing was more significant than the following year: 25 000 tons of fines below 2 mm in diameter were flushed in six non‐consecutive days in summer 2010, while, one year earlier, 75 000 tons were flushed in 16 non‐consecutive days. In the third year of investigation (2011), no sediment evacuation took place. The benthic macroinvertebrate and the fish communities were surveyed a short distance below the reservoir, that is, in the potentially more affected river reach. Clear pieces of evidence of environmental quality degradation were not detected; the adopted strategies can therefore be considered to be appropriate when planning sediment flushing management in comparable contexts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The Saint‐Sauveur dam was built in 1992 in the middle section of the Buëch River. Downstream of the dam, a channel incision by several meters was observed. A gravel replenishment operation was planned in order to restore the active channel. An equivalent of two times the mean annual bedload‐transport capacity (43,500 m3) was replenished downstream of the dam in September 2016. The aim of this paper is to quantify morphological change associated with sediment remobilization in order to evaluate the efficiency of the restoration works. The monitoring was based on a combination of (a) change detection using sequential high‐resolution digital elevation models (from airborne LiDAR data), (b) bedload tracing using active ultrahigh‐frequency radio‐frequency identification technology, and (c) complementary field surveys of channel grain‐size distribution and morphology for bedload‐transport computation. Field monitoring allows us to capture a net aggradation along a 2‐km reach after the first post‐replenishment flood. A sediment balance analysis was performed to back‐calculate bedload supply coming from the sluicing operation during the flood. Although the sediment replenishment operation clearly had a positive impact on the morphological conditions of the starved river reach, the effective bedload supply from artificial berms (22,650 m3) was insufficient to initiate substantial channel shifting along the restored reach and a subsequent amplification of the sediment recharge. The combination of high‐resolution topographic resurveys and sediment tracing was successful to evaluate the downstream propagation of sediment replenishment effects.  相似文献   

3.
Mosul Dam, located on the Tigris River north of Iraq, is experiencing sedimentation problems, especially near the Al‐Jazeera pumping station that supplies the irrigation water for the Al‐Jazeera project. The sources of the sediment accumulated within the reservoir are from the Tigris River, as well as ten side valleys on both sides of the reservoir. The sediment inflow rate into the reservoir and the released values are considered on the basis of the operation schedule of the dam for the considered period from 1986 to 2011. The sediment loads were estimated on the basis of available measurements and estimated literature values. The HEC‐RAS 4.1 model was used for flows and sediments in the main river and reservoir. The model was calibrated for flow simulations (coefficient of determination r2 = 0.87) and sediment routing based on bed level, (with resultant r2 = 0.98 and Mean Absolute Deviation of 0.95). The Ackers–White equation was used in the HEC‐RAS model for sediment routing because of the wide range of sediment sizes in the study case. The resultant total accumulated sediment load volume was 1.13 km3, a value that is very close to the measured values (1.143 km3) obtained from a previous bathymetric survey. Furthermore, the model indicated most of the sediment (80.7%) was deposited during the first five of the dam operation.  相似文献   

4.
大燕河沉积物重金属污染特征及生态风险分析   总被引:1,自引:0,他引:1  
为了解大燕河表层沉积物重金属污染特征及潜在生态风险,对大燕河干流和支流沉积物重金属污染物进行了分析,并采用Hakanson生态危害指数法进行评价。结果表明,大燕河干流沉积物重金属含量明显高于支流,重金属含量高于广东省土壤背景值,Cu、Cd、Zn、Pb、Hg超出了土壤环境质量Ⅰ级标准。沉积物中重金属Cu、Cd的富集系数明显高于其他重金属,不同采样点重金属超出背景值的程度具有明显的差异性,呈现干流高于支流,下游高于上游的特征。沉积物中重金属具有极强的生态危害,各种重金属造成的平均生态危害程度由大到小依次为:CdHgCuAsPbZnNiCr,其潜在生态风险应引起足够的重视。  相似文献   

5.
Sedimentation always leads to loss of reservoir storage. This is an important issue for reservoir management, particularly for reservoirs on the Yellow River. As a result of sedimentation, sandbars are frequently found at the mouth of tributaries in reservoirs. The evolution of a tributary mouth sandbar, including its formation and scouring, plays a key role in reservoir sedimentation. However, there are few effective numerical models reported in previous studies for tributary mouth sandbar evolution in reservoirs. In this study, we propose two modules for evolution processes of mouth sandbars: one for intrusion and sedimentation and the other for scouring process. Both modules coupled turbidity current, open‐channel flow, and flow exchanges between the main stream and tributaries. Field measurements and laboratory experiments with different set‐ups were used to test the capabilities of the two proposed modules. By coupling formation and scouring modules with a 2D morphodynamic model in reservoirs, we successfully built a novel numerical model to simulate the evolution processes of tributary mouth sandbars in reservoirs. A field‐scale application of the coupled model was undertaken to simulate evolution of tributary mouth sandbars in the Xiaolangdi Reservoir, Yellow River. The results indicate that the numerical model in this study is more practical than previous models and could provide great support for optimizing reservoir operation in other systems.  相似文献   

6.
Elevated instream fine sediment is one of the most important water quality stressors affecting both the structure and function of aquatic ecosystems. This study evaluates whether a predictable pattern of trait distribution of Ephemeroptera, Plecoptera, and Trichoptera (EPT) can be observed along a gradient of sediment stress in eight selected sites in the Tsitsa River and its tributaries. The sites were classified into four site groups according to their fine sediment loads. One‐way analysis of variance was used to test differences in the relative abundance of traits across the site groups. A predictable pattern was observed in 13 of the 27 trait attributes tested, with most traits displaying low abundances in highly disturbed site groups. The relationship between EPT traits and fine sediment stress was analysed using the multivariate RLQ analysis, and the result showed that traits such as swimming, shredding, operculate gill, small body size, and sclerotized body were the dominant traits in the sediment influenced site groups. In the less disturbed site groups, filter feeding, crawling, filamentous gill, soft and exposed body, and large body size were the dominant trait attributes. These observed relationships between EPT traits and sediment stress provide support for the potential usefulness of EPT traits as indicators of fine sediment stress in riverine ecosystems.  相似文献   

7.
The Three Gorges Reservoir (TGR), located on the Yangtze River in China, is operated for hydropower, flood control and navigation, with minimal environmental releases. This study explored the potential trade‐offs between better environmental releases from the TGR and hydropower generation using three performance indicators. Spearman's rank correlation coefficient between unimpaired flows and regulated flows was used as an indicator of environmental performance (eco rho). Energy generation as a fraction of capacity (energy fraction) and power reliability were used as hydropower performance indicators. We first assessed TGR performance without and with basic instream flow requirements (IFRs). We then imposed an IFR consisting of a minimum release of fraction k of inflow and maximum release of 1/k of inflow and assessed the sensitivity of reservoir performance to different fixed k values. Finally, we allowed k to vary within the year in a genetic algorithm to estimate the Pareto optimal trade‐offs between performance indicators. In all cases, flood and navigation rules were prioritized over environmental and hydropower. With a fixed k of 1.0, eco rho increased from 0.865 to nearly 1.0 (completely natural). Energy fraction reduced from 43.5 to 39.3%, or about 9.5%, and power reliability decreased from 97.0 to 59.2%. The Pareto optimal trade‐off surface not only showed similar results but also indicated that energy fraction and environmental performance can both be increased together, up to a point, but at a cost of reliability. This study helps understand the potential costs of re‐operating the TGR. Limitations and potential future directions are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
采用潜在生态危害指数法对东莞市望牛墩镇望溪河和聚龙江底泥中重金属含量进行评价,并结合二者的污染特征,为减少河道清淤对周边环境造成二次污染,提出了淤泥处理技术及资源化综合利用的相关建议。  相似文献   

9.
Land‐use changes effects on floods are investigated by a multi‐scale modelling study, where runoff generation in catchments of different sizes, different land uses and morphological characteristics are simulated in a nested manner. The macro‐scale covers the Rhine basin (excluding the alpine part), the upper meso‐scale covers various tributaries of the Rhine and three lower meso‐scale study areas (100–500 km2) represent different characteristic land‐use patterns. The main innovation is the combination of models at different scales and at different levels of process representation in order to account for the complexity of land‐use change impacts for a large river basin. The results showed that the influence of land‐use on storm runoff generation is stronger for convective storm events with high precipitation intensities than for long advective storms with low intensities. The simulated flood increase at the lower meso‐scale for a scenario of rather strong urbanization is in the order of 0 and 4% for advective rainfall events, and 10–30% for convective rain storms with a return period of 2–10 years. Convective storm events, however, are of hardly any relevance for the formation of floods in the large river basins of Central Europe, because the extent of convective rainstorms is restricted to local occurrence. Due to the dominance of advective precipitation for macro‐scale flooding, limited water retention capacity of antecedent wet soils and superposition of flood waves from different tributaries, the land‐use change effects at the macro‐scale are even smaller, for example at Cologne (catchment area 100 000 km2), land‐use change effects may result in not more than 1–5 cm water level of the Rhine. Water retention measures in polders along the Upper and Lower Rhine yield flood peak attenuation along the Rhine all the way down to the Dutch border between 1 and 15 cm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Despite the long‐term research on the use of hydraulic‐hydrodynamic habitat models (HHMs) for predicting the response of aquatic biota to habitat alteration, their practical application in model‐based environmental flow assessments (EFAs) has been limited due to reasons mainly associated with cost‐effectiveness, time‐efficiency, required expertise, and availability of hydroecological information. In this study, we demonstrate a cost‐effective and time‐efficient application of a benthic‐invertebrate, two‐dimensional, fuzzy rule‐based EFA in a 277‐m long reach in the downstream route of a regulated river in western Greece. Apart from developing ecosystem‐based environmental flow (eflow) scenarios, we highlight the valuable features of HHMs, comment on their disadvantages, and propose working solutions to overcome them. The results of the study show that the hydrology‐based eflow of 0.2 m3/s, initially proposed by the managing authorities, is not sufficient to ensure the long‐term functionality of the downstream benthic communities, as the ecosystem‐based eflow ranged between 0.6 and 2 m3/s. As social resilience relies heavily on ecological resilience, ecosystem‐based approaches can ensure the sustainability of aquatic ecosystems. This study demonstrates, inter alia, that HHMs‐based EFAs can be implemented cost‐effectively and time‐efficiently to serve as an accurate scientific basis for water managers and stakeholders, in search of the fine balance between anthropogenic water demand and long‐term ecosystem integrity and functionality.  相似文献   

11.
英金河流域水沙特性分析   总被引:1,自引:0,他引:1  
孟庆久 《泥沙研究》2003,(3):78-80,F003
作者对内蒙南部多沙河流英金河的来水来沙特性进行了系统的分析,从流域水沙来源及输沙特性,到上下游各站及本站的水沙关系,都一一进行了分析,最后分析了阴河拟建水库三座店综合水利枢纽的入库水沙特性,并对运用方式进行了初步探讨。水沙特性的分析给英金河流域拟建水库排沙运用方式的确定提供了初步依据。  相似文献   

12.
溪洛渡水库对三峡水库泥沙淤积影响预估   总被引:4,自引:0,他引:4  
通过水库淤积一维数学模型计算分析,预估溪洛渡水库兴建后,与三峡水库联合运用50年,三峡库区泥沙淤积量较不建溪洛渡水库减少约37亿m3,特别是变动回水区减淤效果显著,在不同频率洪水下重庆市主城区河段洪水位少抬高1.5m左右。  相似文献   

13.
阐述了小浪底水库对黄河下游防洪减淤的贡献和当前下游河道出现的新情况。根据三门峡水库的经验,提出在"拦沙后期"水库下泄泥沙的级配控制、扩大下游河道的输沙能力、水库高含沙调控等水库水沙调控可能遇到的挑战。建议在"调沙减淤"的理念下,制定新的水库水沙调控模式和运行方式,建立包括水库以及下游河道在内的一整套水沙调控决策系统,以尽可能地延长水库寿命和确保下游河道的长治久安。  相似文献   

14.
15.
Determination of water resources management thresholds, such as conservation releases, passby flows, and water availability limits, is a contemporary challenge facing water resources managers. With recent advancements in environmental flow science, including the ecological limits of hydrologic alteration (ELOHA) framework, environmental flow standards can be developed for a variety of stream types throughout a particular region or watershed. Environmental flow standards typically cover the entire natural flow regime, including low‐flow, seasonal‐flow (medium), and high‐flow components. However, it can be difficult for water resources managers to directly apply these standards to establish practical management thresholds. This study proposes a novel approach to assessing water capacity based on ELOHA environmental flow standards. The procedure entails iterative simulations to identify withdrawal limits for gaged streams and regional regression analysis to predict withdrawal limits for ungaged streams. The approach was applied for 63 reference gages with long‐term, continuous, minimally altered, daily streamflow records within the Susquehanna River basin. The results of the investigation demonstrate that the approach can be used to assess water capacity from gaged and ungaged streams via iterative withdrawal simulations and regional regression analysis respectively. The regression equation developed through analysis of the reference gages has an adjusted R‐square value of 0.96 and a standard error of 27%. Determination of a water capacity value, based on a suite of environmental flow standards, provides water resources managers with a valuable tool for informing the establishment of water resources management thresholds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A reservoir sediment release along the North Fork Cache la Poudre River (North Fork) in northern Colorado resulted in a massive fish kill and channel sedimentation that filled pools critical to fish as overwinter habitat. Recognition of the hazards associated with a large influx of sediment into a riverine ecosystem is critical for a greater understanding of the effects of sediment releases, and hence, future management of sediment within reservoirs. Two one‐dimensional sediment transport models, HEC‐6 and GSTARS 2.0, were evaluated for applicability to predict sediment removal along the steep gradient, bedrock‐controlled pool‐riffle North Fork. The ability of both models to identify flushing discharges that assist channel recovery was also evaluated. Two modeling scenarios representing a low and high flushing discharge were modeled. Within each scenario, two levels of simulations were conducted to represent conditions of data availability, a default simulation for limited data input, and a robust simulation that utilized the entire set of field data, collected over a 1‐year period. The models were calibrated against quantitative measurements of pool bed elevation obtained during field resurveys. Preliminary analyses were conducted to identify the appropriate sediment transport equations. HEC‐6 results indicate that long‐term, robust simulations yield the closest agreement between predicted and measured pool bed elevation change. More than 50% of the actual scour and deposition within three pools was modeled using HEC‐6. Modeling accuracy using GSTARS 2.0 was considerably lower, and it appears that the present construct of the model does not reflect the physical processes operating along the North Fork. Computer models are useful tools in the sediment management decision process, provided adequate data collection and calibration are conducted. In situations where restrictions exist on available flushing discharges, sediment transport modeling can assist management decisions, and modeling is always preferable to uncalibrated estimates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Natural Flood Management (NFM) techniques aim to reduce downstream flooding by storing and slowing the flow of stormwater to river channels. These techniques include a range of measures, including setback stormwater outfalls and the physical restoration of channels and floodplains, to improve the natural functioning of catchments. An additional benefit of NFM measures is the potential reduction in sediment and pollutant delivery to the channel. Urban development releases a variety of heavy metal and nutrient pollutants that enter rivers through stormwater outfalls with adverse effects on the aquatic ecosystem. In this study, the influence of channel modification and quality of the river habitat on the sediment quality surrounding stormwater outfalls was assessed. Sediment samples were taken at several outfalls within the Johnson Creek catchment, Oregon, USA, and analysed for a variety of urban pollutants. The level of river habitat quality and modification at each site were assessed using a semi‐quantitative scoring methodology. Significant increases in pollutant levels were observed at outfalls, with a greater and more variable increase at direct compared to setback outfalls. Removal efficiency of certain pollutants was found to be significantly correlated to the level of habitat quality or modification (for Fe, Ba, Sn, Mg, P, K) indicating that more natural reaches had greater potential for pollutant removal. The findings highlight the multiple benefits associated with NFM and river restoration approaches in relation to sediment quality and pollutant content. © 2016 The Authors River Research and Applications Published by John Wiley & Sons, Ltd.  相似文献   

18.
Floodplains and their associated wetlands are important features of semiarid and arid landscapes, providing habitat and refugia for native species as well as contributing to human needs for freshwater. Globally, floodplain habitats are some of the most modified ecological communities because of water resource development and land‐use changes. However, the hydrological changes that have occurred in highly variable semiarid and arid systems are rarely quantified in a way that helps us understand the consequences for different floodplain habitat types. This study investigated changes in floodplain‐river connectivity that have occurred because of water resource development on four floodplain habitat types in the Lachlan River Catchment, Australia: (a) temporary floodplain lakes, (b) intermittent river red gum (Eucalyptus camaldulensis) swamps, (c) intermittent black box (Eucalyptus largiflorens) swamps, and (d) terminal wetlands (wetlands along distributary creeks). Changes to floodplain‐river connectivity characteristics were calculated using their commence to fill thresholds and flow scenarios derived from a river hydrology model, enabling comparison of long‐term data sets (120 years) encompassing a range of climate conditions. Connection regime metrics have changed significantly in all floodplain habitats except intermittent black box swamps. Temporary floodplain lakes have experienced the greatest reduction in number of connection events (60% reduction), followed by intermittent river red gum swamps (55% reduction). Intermittent black box swamps and terminal wetlands have experienced the least change in number of connection events (35% reduction). The nature of the change in connection suggests a change in vegetation communities will occur in response to long‐term hydrological change.  相似文献   

19.
金沙江下游梯级水库淤积及其对三峡水库影响研究   总被引:1,自引:0,他引:1  
2012年以来,金沙江下游向家坝水电站、溪洛渡水电站相继蓄水运用,拦截了金沙江下游泥沙。为了解梯级水库泥沙淤积情况及其拦沙作用对下游三峡水库的影响,基于大量水沙、固定断面观测资料,采用输沙法和地形法,计算分析了向家坝水电站、溪洛渡水电站2库自运用以来的库区泥沙淤积量及分布特征,研究了梯级水库拦沙作用对三峡水库的影响。结果表明:向家坝、溪洛渡库区泥沙淤积量较小,金沙江下游梯级拦沙使得三峡入库沙量及库尾重点河段淤积强度均减小。研究成果对梯级水库运行、三峡水库运行及调度方式优化具有十分重要的意义。  相似文献   

20.
长江上游一批大中型水库的相继建成,对上游流域的水文、泥沙特性将产生一定的影响。系统分析了上游流域水库群建成后各支流主要控制性水文站及干流寸滩、宜昌站的水沙变化规律。结果表明:除屏山站以外,各站点在时段分割点后的年均径流量均较之前呈明显的下降趋势,下降幅度达4%~24%;各站点年均输沙量下降趋势更为明显,下降幅度达30%~90%。在此基础上,分析了长江上游水库群兴建后面临的新形势,并对当前需重点研究解决的问题提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号