共查询到20条相似文献,搜索用时 15 毫秒
1.
Sparse multinomial logistic regression (SMLR) is widely used in image classification and text classification due to its feature selection and probabilistic output. However, the traditional SMLR algorithm cannot satisfy the memory and time needs of big data, which makes it necessary to propose a new distributed solution algorithm. The existing distributed SMLR algorithm has some shortcomings in network strategy and cannot make full use of the computing resources of the current high-performance cluster. Therefore, we propose communication-efficient sparse multinomial logistic regression (CESMLR), which adopts the efficient network strategy of each node to solve the SMLR subproblem and achieve a large number of data partitions, taking full advantage of the computing resources of the cluster to achieve an efficient SMLR solution. The big data experimental results show that the performance of our algorithm exceeds those of state-of-the-art algorithms. CESMLR is suitable for processing tasks with high-dimensional features and consumes less running time while maintaining high classification accuracy. 相似文献
2.
针对图像处理中目标函数为对图像梯度的约束,形式为正则项与保真项之和的优化问题,提出了一种对该优化问题的变形形式,并给出了基于交替方向乘子法(alternating direction method of multipliers,ADMM)的优化算法进行求解.在约束条件下采用每个图像中的最小单元上的分段式,使得在每步迭代中的每个子问题可以分化为在每个最小单元上的二元优化问题,从而可直接获得优化问题的最优解.所提出的优化形式与优化算法可以控制每步迭代的时间复杂度在O(N),其中N为优化问题在该图像区域中最小单元的个数,还可进一步根据图像的分割进行并行化.文中给出了2个图像上比较经典的优化问题:L0模优化问题和Poisson图像编辑的优化算法.与现有的基于迭代算法相比,文中算法在达到相似结果的同时,可具有更快计算速度与更小的内存消耗. 相似文献
3.
聚类作为一种非监督学习方法是数据科学中重要的研究内容.K-means是一种基于划分的聚类算法,一般是利用启发式算法求解一个离散的NP问题.为增强K-means在大数据问题中的应用性,从聚类矩阵的属性出发,设计了一类非凸连续的K-means等价聚类优化模型,并利用ADM M框架给出了该等价模型的快速优化算法.数值实验结果表明了该模型及其优化算法在大数据聚类中的准确性和高效性.此外,还讨论了该模型的性质及等价性问题. 相似文献
4.
提出一种基于交替方向乘子法的(Alternating Direction Method of Multipliers;ADMM)稀疏非负矩阵分解语音增强算法;该算法既能克服经典非负矩阵分解(Nonnegative Matrix Factorization;NMF)语音增强算法存在收敛速度慢、易陷入局部最优等问题;也能发挥ADMM分解矩阵具有的强稀疏性。算法分为训练和增强两个阶段:训练时;采用基于ADMM非负矩阵分解算法对噪声频谱进行训练;提取噪声字典;保存其作为增强阶段的先验信息;增强时;通过稀疏非负矩阵分解算法;从带噪语音频谱中对语音字典和语音编码进行估计;重构原始干净的语音;实现语音增强。实验表明;该算法速度更快;增强后语音的失真更小;尤其在瞬时噪声环境下效果显著。 相似文献
5.
6.
MT-ELM通过隐含层共享不同任务间的数据特性实现多任务学习,但MT-ELM忽略任务间关联程度的差异以及存在的过拟合问题,为此提出基于MT-RELM软测量建模方法。首先,利用RELM解决过拟合问题;其次,考虑任务之间关联度的差异,基于相关性较强的任务其权值向量也较相似的假设,在每个任务输出权值的基础上加入约束条件,利用此约束条件表示任务间的相关程度;最后,利用ADMM算法迭代求解得到MT-RELM的模型参数。基于合成数据集与湿式球磨机数据集的结果表明,此算法可有效地提高模型的预测精度以及泛化能力。 相似文献
7.
基于低秩正则化的非局部低秩约束(Nonlocal low-rank regularization, NLR)算法利用相似块的结构稀疏性,获得了目前最好的重构结果。但是它仅仅利用了图像的非局部信息,忽略了图像像素间的局部信息,不能有效地重建图像的边缘,同时Logdet函数不能很好地替代矩阵秩,因为它跟真实解之间存在着不可忽视的差距。因此,本文提出了一种基于局部和非局部正则化的压缩感知图像重建方法,同时考虑图像的非局部低秩性和图像像素的局部稀疏梯度性。选择利用Schatten-p范数来替代矩阵秩,同时选择交替方向乘子算法求解产生的非凸优化问题。实验结果表明,与传统的稀疏性先验重建算法和NLR算法相比,本文算法能够获得更高的图像重构质量。 相似文献
8.
We describe general heuristics to approximately solve a wide variety of problems with convex objective and decision variables from a non-convex set. The heuristics, which employ convex relaxations, convex restrictions, local neighbour search methods, and the alternating direction method of multipliers, require the solution of a modest number of convex problems, and are meant to apply to general problems, without much tuning. We describe an implementation of these methods in a package called NCVX, as an extension of CVXPY, a Python package for formulating and solving convex optimization problems. We study several examples of well known non-convex problems, and show that our general purpose heuristics are effective in finding approximate solutions to a wide variety of problems. 相似文献
9.
With the rapid development of cloud computing, many distributed data centers have been deployed. This means larger energy consumption requirements from the data center. How to reduce the cost of data center has received significant attention recently. Although there are several efforts in studying energy consumption of the data center, very few have considered modeling and analyzing cost‐aware job scheduling for the cloud data center. To address this emerging problem, we propose a systematic approach that considers both basic elements and their relationships in cloud data center. First, we present a formal language to describe the cloud data center, and a job scheduling net is proposed to formally model the basic elements such as user request, Web portal, data center, and server. Second, we minimize the total cost of the cloud data center by considering the multidimensional resource and local electricity price on the basis of the state space of constructed model. The dynamic job scheduling algorithm and its specific execution steps are proposed based on the alternating direction method of multipliers algorithm. Third, the operational semantics and related theories of Petri nets for establishing the correctness of our proposed method are presented. Finally, a series of simulations are performed to illustrate that the proposed method can guarantee the correct behavior of job scheduling in the cloud data center while meeting the required cost. 相似文献
10.
11.
图像修复TV模型的快速算法研究 总被引:1,自引:0,他引:1
关于图像修复的全变分( TV)模型的求解有很多方法。在图像修复的全变分( TV)模型中,文中针对含有非光滑项的凸优化问题提出了一种基于交替方向乘子法( ADMM)的快速求解算法。 ADMM方法对迭代公式中具体的子问题求解过程一般采用Gauss-Seidel方法,文中通过分析TV修复模型的性质,对ADMM算法进行了相应的改进,使得具体的数值求解可以用快速傅里叶变换方法,并证明了该算法的收敛性。实验结果表明,文中所提出的新算法与采用Gauss-Seidel迭代的方法相比较,不但修复效果更好,而且修复速度更快。 相似文献
12.
We propose a new splitting augmented Lagrangian method (SALM) for solving a class of optimization problems with both cardinality constraint and semicontinuous variables constraint. The proposed approach, inspired by the penalty decomposition method in [Z.S. Lu and Y. Zhang, Sparse approximation via penalty decomposition methods, SIAM J. Optim. 23(4) (2013), pp. 2448–2478], splits the problem into two subproblems using auxiliary variables. SALM solves two subproblems alternatively. Furthermore, we prove the convergence of SALM, under certain assumptions. Finally, SALM is implemented on the portfolio selection problem and the compressed sensing problem, respectively. Numerical results show that SALM outperforms the well-known tailored approach in CPLEX 12.6 and the penalty decomposition method, respectively. 相似文献
13.
This paper investigates the distributed model predictive control (MPC) problem of linear systems where the network topology is changeable by the way of inserting new subsystems, disconnecting existing subsystems, or merely modifying the couplings between different subsystems. To equip live systems with a quick response ability when modifying network topology, while keeping a satisfactory dynamic performance, a novel reconfiguration control scheme based on the alternating direction method of multipliers (ADMM) is presented. In this scheme, the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control. Meanwhile, by employing the powerful ADMM algorithm, the iterative formulas for solving the reconfigured optimization problem are obtained, which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response. Ultimately, the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics. 相似文献
14.
结合人体运动数据的低秩性,将人体运动捕获数据恢复问题建模为低秩矩阵填充问题.不同于传统方法采用核范数作为矩阵秩函数的凸松弛,引入非凸的矩阵Capped核范数(CaNN).首先,建立基于CaNN正则化的人体运动捕获数据恢复模型;其次,利用交替方向乘子法,结合截断参数自适应学习与(逆)离散余弦傅里叶变换对模型进行快速求解;最后,在CMU数据集和HDM05数据集上,将CaNN模型与经典的TSMC,TrNN,IRNN-Lp和TSPN模型进行对比实验.恢复误差和视觉效果比较结果表明,CaNN能够有效地对失真数据进行恢复,且恢复后的运动序列与真实运动序列逼近度较高. 相似文献
15.
Robust high-dimensional data processing has witnessed an exciting development in recent years. Theoretical results have shown that it is possible using convex programming to optimize data fit to a low-rank component plus a sparse outlier component. This problem is also known as robust PCA, and it has found application in many areas of computer vision. In image and video processing and face recognition, the opportunity to process massive image databases is emerging as people upload photo and video data online in unprecedented volumes. However, data quality and consistency is not controlled in any way, and the massiveness of the data poses a serious computational challenge. In this paper we present t-GRASTA, or “Transformed GRASTA (Grassmannian robust adaptive subspace tracking algorithm)”. t-GRASTA iteratively performs incremental gradient descent constrained to the Grassmann manifold of subspaces in order to simultaneously estimate three components of a decomposition of a collection of images: a low-rank subspace, a sparse part of occlusions and foreground objects, and a transformation such as rotation or translation of the image. We show that t-GRASTA is 4 × faster than state-of-the-art algorithms, has half the memory requirement, and can achieve alignment for face images as well as jittered camera surveillance images. 相似文献
16.
为了提高纹理图像分割的准确率,解决纹理图像中纹理图像成分及纹理区域边界难以描述的问题.基于总变差(total variation, TV)规则项可得到纹理图像区域隐藏的图像结构、非局部算子可以描述纹理图像特征的特点,综合TV模型、非局部Mumford-Shah模型,并用二值标记函数划分区域,提出纹理图像分割的非局部Mumford-Shah-TV变分模型;为了提高计算效率,对所提出的模型设计了相应的交替方向乘子算法,将原问题分解为一系列优化子问题求解.数值实验结果表明,该模型计算的纹理图像区域边界较好,并具有较高的准确率. 相似文献
17.
针对传统全变分进行扩展,提出了一种高阶全变分结合交叠组合稀疏的新算法,将像素级别梯度信息推广为高阶交叠组合稀疏梯度信息,更好地抑制了因全变分产生的阶梯效应并保存了图像边缘等细节信息。为了解决提出的图像复原新算法的优化问题,采用交替方向乘子算法(ADMM)来交替求解优化问题。将新算法与其他几种相关算法相比,并用峰值信噪比(PSNR)和结构相似性(SSIM)两个评价指标来评价图像复原后的质量,从而论证了新算法的优越性。 相似文献
18.
为有效预测船舶交通流量,利用非凸低秩稀疏分解模型将交通流量数据分解成低秩和稀疏两部分,然后采用自回归移动平均模型(Autoregressive Integrated Moving Average Model, ARIMA)分别预测低秩和稀疏部分,进而合并得到最终的船舶交通流量预测结果;最后以天津港2003-2014年船舶交通流量历史数据为例进行模型验证和预测分析。实验结果表明,本文方法较神经网络模型能够显著地提高船舶交通流量的预测精度,为船舶交通流量预测提供了一种新的预测方法。 相似文献
19.
针对经典的基于L1数据保真项的总变分图像复原模型易导致阶梯效应和损失图像重要细节的缺陷,提出了一种基于L1数据保真项的二阶总广义变分(Total Generalized Variation, TGV)图像复原模型。为进一步提升含脉冲噪声模糊图像复原质量,在二阶TGV图像复原模型中引入边缘检测算子,使其在图像边缘区域减弱扩散,较好地保护图像边缘特征;在图像平滑区域增强扩散,有效地消除脉冲噪声和抑制阶梯效应。为稳定地复原降质图像,采用交替方向乘子法求解二阶变分模型。实验结果表明,提出的图像复原模型在消除噪声和模糊的同时,能成功抑制阶梯效应并保留图像的边缘结构特征。相比经典的图像复原模型,新模型在信噪比、相对误差和结构相似度等方面均取得了较好的图像复原效果。 相似文献
20.
二阶广义的全变分模型是一种建立在全变分模型的思想之上进行改进的图像去噪模型,该模型是一种考虑了一阶以及高阶梯度稀疏性的模型,能够有效地抑制阶梯伪影效应的产生。Lp收缩算子相比于L1算子增加了一个自由度,它能够更好地刻画稀疏梯度信息,同时Lp收缩算子的等高线对噪声更加鲁棒。考虑到Lp收缩算子的优势,将Lp收缩算子引入二阶广义全变分去噪模型,提出改进的二阶广义全变分Lp收缩算子模型(TGV2-Lp)。利用交替乘子迭代法对模型进行求解,引入快速傅里叶算法提高算法效率。通过测试6组图片、对比传统的3种去噪模型,从实验结果可以得出,提出的模型TGV2-Lp在有效保留图片边缘细节信息的同时,能够有效去除噪声,在视觉效果、峰值信噪比和结构相似性都有一定优势. 相似文献