首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater from a depth of 100–200 m is the main source of public water supply in most municipalities in the Pannonian basin in central and southeastern Europe. Even though its quality does not always meet EU standards for drinking water—including those regarding arsenic—in many villages and even in some major cities no treatment except chlorination takes place. Of the several alternatives to improve the water supply situation in the Autonomous Province of Vojvodina in the northern part of the Republic of Serbia, re-orientation towards more centralized systems combined with river bank filtration as an additional and sustainable raw water resource was evaluated as the best. A hydrogeological and hydrochemical survey of the Tisa (or Tisza) River alluvium in the Padej test field confirmed the aptness of this approach. A good connection between the Tisa River bed and the alluvial aquifer consisting of fine-grained sand was found (average hydraulic conductivity of 5 × 10−5 m/s). With appropriately designed and managed wells, 80–100 l/s bank filtrate per km of river bank can be produced for water supply. Comprehensive analysis of the river water and river bank filtrate as well as a pilot treatment of the bank filtrate suggest that aeration-oxidation-flocculation-filtration-disinfection is a suitable technology for the Tisa River bank filtrate.  相似文献   

2.
Production of drinking water from river water, abstracted either directly from the river or from storage reservoirs, requires the application of barriers for pathogenic micro-organisms. About one third of the total production of drinking water in the Netherlands is derived from surface water, mainly the River Meuse and branches of the River Rhine. The results of extensive monitoring programmes show that the microbiological water quality of the River Rhine and River Meuse is strongly influenced by domestic and agricultural waste water discharges, with respect to the River Meuse mainly in the Liège-region to Belgium. Densities of Cryptosporidium and Giardia in both rivers are comparable; the highest density was found in the Belgian Meuse basin. Elimination rates of 1.7- to 3.1 10log-units for pathogenic micro-organisms were found in Dutch storage reservoirs, which can thus be considered as an important first barrier for pathogenic microorganisms. The elimination capacity of reservoirs is influenced by retention time and contamination by waterfowl. To meet the proposed quality criteria for pathogens in drinking water, however, additional barriers are required.  相似文献   

3.
The Atchafalaya River Basin in south‐central Louisiana (USA) comprises the largest contiguous river–floodplain swamp in North America and functions as a distributary for the Mississippi River to the Gulf of Mexico. We assessed the impact of the annual flood pulse on fisheries production at a basin‐wide scale. We modelled flood duration (days/year Butte LaRose gauge height >3.6 m) and magnitude (mean daily gauge height) against long term (1987–2009) fishery‐independent and fishery‐dependent data on largemouth bass (Micropterus salmoides), crappie (Pomoxis spp.), blue catfish (Ictalurus furcatus), buffalofish (Ictiobus spp.), gizzard shad (Dorosoma cepedianum) and crayfish (Procambarus spp.). When the Atchafalaya River at Butte LaRose is at flood stage (≥ 3.6 m gauge height) for approximately 121–157 days/year, then annual relative abundances of largemouth bass, crappie, blue catfish and buffalofish are optimized during the fall (October–December). In contrast to the tenets of the flood pulse concept, gizzard shad abundance was optimized during low flow years, when flood duration is ≤10 days/year. Annual proportion of age‐1 largemouth bass was associated positively with flow magnitude during the previous year, whereas proportions of age‐2 largemouth bass and crappie were associated positively with flood magnitude 2 years prior to the fish sample. Results for commercial production metrics were ambiguous. Crayfish catches were associated positively with flood magnitude and duration, whereas gizzard shad landings peaked at a relatively small flood magnitude level and were not related to flood duration. Blue catfish and buffalofish annual landings were not influenced by the annual flood pulse. The annual flood pulse can be managed to optimize the availability of recreational (largemouth bass and crappie) and some commercial fisheries resources (blue catfish and crayfish). We estimate that a minimum discharge of 8807 m3 s?1 is required at the river's source for approximately 4–5 months during the winter–spring months to optimize fisheries production. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Considered one of the five major threats to biodiversity worldwide, Invasive Alien Species (IAS) particularly threaten riparian ecosystems. Among the IAS found on riverbanks, Asian knotweeds (Reynoutria spp. including R. japonica Houtt.; R. sachalinensis [F.Schmidt] Nakai and the hybrid R. x bohemica Chrtek & Chrtkova) can barely be controlled as, once established, they disperse easily along stream banks via rhizome or stem fragments transported by water. However, the hydrogeomorphological processes underlying the establishment of Asian knotweeds are poorly understood. The objective of this study was to describe and model the hydrogeomorphological preferences of Asian knotweeds along a Mediterranean river. Based on exhaustive presence/absence surveys, we implemented two models related to the presence of Asian knotweeds: (1) at the river reach scale and (2) at the finer scale of the alluvial bar. Areas of low curvature identified as convex banks and the central parts of alluvial bars appear to be more susceptible to knotweed establishment. Highly disturbed areas were less favorable to maintaining plant species, including Asian knotweeds, while less disturbed areas with denser plant cover were more favorable to Asian knotweeds. The results seem to indicate a trade-off hypothesis in the knotweed establishment strategy between hydrogeomorphological constraints and strong interspecific competition. Analyzed in the light of the current literature, our final models are designed to integrate hydrogeomorphological processes in order to provide an operational tool to help river managers locate the areas most susceptible to knotweed invasion and with important implications for managing these species in riparian ecosystems.  相似文献   

5.
A new detection method was developed for the simultaneous quantification and genotyping of Cryptosporidium spp. in river water. Several modifications made to the US EPA Method 1623 enabled high and stable recovery of Cryptosporidium from 40 L of river water (geometric mean = 35%, standard deviation = 8.7%). Quenching probe PCR (QProbe PCR) was used to quantify the 18S rRNA gene of Cryptosporidium spp. This method could successfully detect single oocysts in a sample, and the lower quantitation limit was as low as 2.5 oocysts/sample. In addition, denaturing gradient gel electrophoresis (DGGE) followed by DNA sequencing was used to identify the genotypes. These methods were applied to detect Cryptosporidium spp. in the Koyama River, Japan. The positive ratio was 69% (11/16) with the maximum concentration of 59 oocysts/100 L. Seven genotypes including two novel ones were identified. These results showed that this detection method could provide valuable information on Cryptosporidium in river water, both in the concentration and in the genotypes, which is essential for the precise assessment of waterborne risk to human health.  相似文献   

6.
The impacts of river incision should be a lowering of the river level, which would increase the rate of water flow from the hillslope aquifer to the river and its former channels. If this aquifer is nutrient-poor, it should favour the oligotrophication of the former channels. However, if the lowering of the water-table exceeds the depth of the former channels, then it should lead to the drainage of these channels. These hypotheses were tested on two former channels located in a degrading reach of the Rhǒne River (France); the former channels were influenced by floods, seepage water from the river and hillslope groundwater in 1989. The rate of river incision in this reach has increased since 1980 because of gravel extraction from the river bed (0.5 m between 1989 and 1993). Between 1989 and 1993, the reduction of river infiltration and the increase in the amount of water from the hillslope aquifer in the former channels were demonstrated by the decrease in the phosphate and ammonia content of the water, and its increased alkalinity and conductivity. The responses of aquatic vegetation to river incision depended on the vegetation zone investigated. Two floristic zones that were frequently flooded and species-poor in 1989 remained species-poor in 1993. Two floristic zones, which were species-rich and patchily organized, became dry or very shallow in 1993; as a consequence, aquatic vegetation disappeared, and was replaced by helophytes and terrestrial species. In the last vegetation zone, the increase in the amount of water coming from the hillslope aquifer caused the appearance and development of Chara hispida, an oligotraphent species. Unforeseen impacts of river incision were a decrease in the spatial and temporal heterogeneity of the former channels and lower aquatic macrophyte richness.  相似文献   

7.
High human demand for limited water resources often results in water allocation trade‐offs between human needs and natural flow regimes. Therefore, knowledge of ecosystem function in response to varying streamflow conditions is necessary for informing water allocation decisions. Our objective was to evaluate relationships between river flow and fish recruitment and growth patterns at the Apalachicola River, Florida, a regulated river, during 2003–2010. To test relationships of fish recruitment and growth as responses to river discharge, we used linear regression of (i) empirical catch in fall, (ii) back‐calculated catch, via cohort‐specific catch curves, and (iii) mean total length in fall of age 0 largemouth bass Micropterus salmoides, redear sunfish Lepomis microlophus and spotted sucker Minytrema melanops against spring–summer discharge measures in Apalachicola River. Empirical catch rates in fall for all three species showed positive and significant relationships to river discharge that sustained floodplain inundation during spring–summer. Back‐calculated catch at age 0 for the same species showed positive relationships to discharge measures, but possibly because of low sample sizes (n = 4–6), these linear regressions were not statistically significant. Mean total length for age 0 largemouth bass in fall showed a positive and significant relationship to spring–summer discharge; however, size in fall for age 0 redear sunfish and spotted sucker showed no relation to spring–summer discharge. Our results showed clear linkages among river discharge, floodplain inundation and fish recruitment, and they have implications for water management and allocation in the Apalachicola River basin. Managed flow regimes that reduce the frequency and duration of floodplain inundation during spring–summer will likely reduce stream fish recruitment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
EM. Al-Ruwaih 《国际水》2013,38(4):213-224
ABSTRACT

The study area, Umm Gudair, is located in the southwest corner of Kuwait. It occupies an area of ≈ 4.84 × 109 ft2. The brackish ground water is derived from the two main aquifers within the Cenozoic sequence. These are: the Kuwait Group aquifer (Miopleistocene) and the Dammam aquifer (Eocene). In the study area, the two aquifers are treated as a single reservoir Forty-one production wells, locally called “dual completion wells” were finished in the aquifers. This research identifies the hydrogeologic properties and the water quality of the aquifers. In addition, the article discusses the application of the surface electrical method Schlumberger configuration to correlate and delineate the areal distribution of the apparent resistivity with the aquifer salinity, and the occurrence of a water-bearing formation. The results will be use for assessment and management of the groundwater reservoir The water quality of the two aquifers is relatively poor The T.D.S. ranges between 3,130-4,740 mg/L. The hydrochemical facies are calcium-sodium cation facies and chloride-sulphate anion facies. The ground water is classified as a NaCl water type, however two genetic water types are identified: the MgCl2 and CaCl2 are of marine origin and are old marine formations. The aquifer is semiconfined to confined The average transmissivity, which increases toward the N and N-E, is 20,965 Igpd/ft. The geophysical studies conducted along seven profiles with 19 vertical electrical soundings reveal three distinct layers. The first layer is composed of dry gravel and has a resistivity of 80–220 m. For the second layer, the resistivity ranges between 5–9 Ωm. It is assumed to be a clayey layer saturated with brackish water; whereas the third layer corresponding to a limestone formation, has a resistivity of 25–700Ωm. The apparent resistivity decreases in the direction of the increasing salinity From the flow-net analysis, the amount of ground water entering the aquifer along the border with the Saudi Arabia is 2.3 × 106 Igpd, while the average daily production from the Umm Gudair field is 13.5 × 106 Igpd, It is obvious that the daily abstraction rate is higher than the daily flow toward the aquifer Therefore, in the future, if the daily abstractions continue to exceed the daily water flow through the aquifer a serious decline in the water level will result.  相似文献   

9.
The City of Belgrade receives most of its drinking water supply from the alluvial aquifer of the Sava River. The wells are radial, placed in the lower part of the aquifer, so they partly run below the Sava riverbed. However, the groundwater quality of the wells in one part of the source (near the confluence of the Sava and Danube rivers) is found to differ somewhat from the groundwater quality of the other wells. The finding gave rise to additional investigations. The results revealed the existence of a deeper, limestone aquifer which is isolated from upper alluvial sediments by a thick layer of clay in most of the terrain. The naturally potential hydraulic contact of the two aquifers was additionally maintained by well operation in this part of the source. According to multiple analyses of groundwater flow using a hydrodynamic mathematical model, a hydrogeological and hydraulic system of groundwater flow was defined. Although the wells are situated adjacent to the river, and some well laterals are below the riverbed, most of the groundwater that flows to the wells is partly from the wider zone of the alluvial aquifer, and partly from the deeper aquifer. The initial results of hydrochemical investigations also showed an unexpected, inverse oxic character of the groundwater in these two aquifers.  相似文献   

10.

Coupling surface water and groundwater models dynamically based on a simultaneous simulation of saturated and unsaturated zones of soil is a useful method for determining the recharge rate and flow exchange between a river and an aquifer as well as simultaneous operation of water resources systems. Thus, the main objectives of this study are to investigate the effects of surface water and groundwater interactions through their systematic simulation and to create a dynamic coupling between surface water and groundwater resources of the area by relevant mathematical models. Accordingly, hydrologic soil moisture method and MODFLOW model were employed to simulate the unsaturated and saturated zones, respectively. The results revealed that simultaneous simulation of the saturated and unsaturated zones of the soil can illustrate the interaction between surface water and groundwater at any spatial and temporal intervals well through using complete hydroclimatological balance components in the form of a coupled model. The application of this method in the Loor-Andimeshk Plain, located in the southwest of Iran, showed that aquifer recharge through the plain area from November to March is due to precipitation. On the other hand, in the warm months (June to September), the plain is merely fed through irrigation water penetration. As the level of river water in both Dez and Balarood rivers is higher than the Loor-Andimeshk aquifer level, hence the exchange occurs as a leakage from the river to the aquifer. The highest and lowest values of average exchangeable water in Balarood River occur in March and April and in Dez River are from June to September.

  相似文献   

11.
Tree mortality and regeneration in riparian areas are greatly influenced by flooding. The elevational distribution of Salix spp. and Robinia pseudoacacia were investigated by observing densities and standing conditions before and after a major flood on a sediment bar in the middle reaches of the Arakawa River in Kumagaya, Japan. The subsequent tree recruitment was also examined. R. pseudoacacia was easily washed away with the eroded sediment, whereas Salix spp. was found to be more tolerant. Both species were able to survive even after collapsing, provided that their roots were fully or partially embedded in the sediment. Re‐shooting of collapsed trees, rather than emergence from saplings (either by seeds or vegetative fragments), was observed to be the major method of recruitment after the flood. Therefore, tree density before the flood was unchanged, unless the trees were subject to washing away. Salix spp. recruitment was mainly observed in low‐lying areas and R. pseudoacacia in elevated areas. Recruitment from saplings was species‐specific. Salix spp. at high elevations originated mainly from shoot fragments as they need high levels of moisture for seed germination and at higher elevations, sediment moisture content is very low. R. pseudoacacia, on other hand, originated mainly from roots and seeds. At a given elevation, past recruitment patterns indicated that the annual recruitment of trees increased with tree density up to a particular threshold of recruitment density. Further increases in tree density beyond that optimum value resulted in a decline in recruitment. Furthermore, threshold density was observed to increase along with elevation for R. pseudoacacia while declining with Salix spp. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Bigheaded carp (Hypophthalmichthys spp.) occur throughout much of the Mississippi Basin, USA. Efforts to control the spread of these invasive species require information on their spatial ecology, though sampling is hindered by their broad extent, habitat tolerances, and species‐specific behaviour. Mobile hydroacoustics was used to quantify habitat and depth use of bigheaded carp over four years in the heavily invaded Lower Illinois River, a major Mississippi tributary and potential dispersal pathway to the Great Lakes. Horizontally oriented transducers (combined with capture gear for species designation) enabled sampling of the main habitat features in this large flood plain river. Silver carp (Hypophthalmichthys molitrix) were dominant over bighead carp (Hypophthalmichthys nobilis) at all but one site, although habitat use was similar for both species. Densities were highest in lotic backwaters, followed by lentic backwaters and nearshore main channel, with lowest densities in the mid main channel. Bigheaded carp size and species composition were independent of habitat type. Depth associations were similar for both species, with average occurrence at 2.5–3.5 m in the main channel and 1–2 m in backwaters. However, depth relative to the river bed was largely similar across habitat types. Bigheaded carp density and depth use in the main channel were linked non‐linearly to river discharge and water temperature, respectively; densities were reduced during high discharge, whereas depth use became shallower at higher temperatures. Density–hydrology trends were less apparent in backwaters. These findings highlight critical aspects of bigheaded carp spatial ecology that will facilitate effective management in invaded and at‐risk ecosystems.  相似文献   

13.
The paper presents how to solve some practical problems of water planning in a medium/large river basin, such as: the water resources assessment and its spatial-temporal variability over the long-short term, the impact of human activities on the water cycle, due to groundwater pumping and water returns into aquifers, the river-aquifer interactions and the aquifer depletion. It is based on the use of a new monthly conceptual distributed water balance model -PATRICAL- that includes the surface water (SW), groundwater (GW) behavior and the river-aquifer interaction. The model is applied to the Júcar River Basin District (RBD) in Spain (43,000 km2), with more than 250 aquifers, including catchments with humid climates (Júcar RBD northern), semiarid and arid catchments (southern). The model has a small number of parameters and obtains a satisfactory performance in SW and GW behavior. It has been calibrated/validated using monthly streamflows and two additional elements not generally used in models for large river basins, GW levels and river-aquifer interactions. In the hydrological time series of the Júcar RBD headers a statistical change point in the year 1979/80 is detected. It is due to changes in precipitation patterns and represents a 40 % of reduction in streamflows in relation with the previous period. The impact of GW pumping in all aquifers is determined, the ‘Mancha Oriental’ aquifer produces a significant reduction in streamflows of the Júcar river –around 200–250 hm3/year. The GW level in the ‘Villena-Benejama’ aquifer -Vinalopo Valley- has declined more than 200 m in last 30 years.  相似文献   

14.
The study investigates the fate and transport of microorganisms introduced by artificial groundwater recharge at the Nardò fractured aquifer in Salento, Italy. Microbial indicators of faecal contamination, parasitic protozoa (Giardia and Cryptosporidium) and pathogenic bacteria (Campylobacter spp.), were monitored into injected water and groundwater to test the efficiency of the "natural disinfection" into the fractured aquifer. A remarkable decrease of microbial indicators and pathogens was observed suggesting that pathogens removal or inactivation may be possible during water flow in fractured aquifer. The recently described PNA probe CJE195 (Lehtola et al. 2005) was utilised for the rapid and specific detection of Campylobacter spp. by fluorescence in situ hybridization (FISH) after enrichment. FISH results were consistent with those of traditional cultural method (ISO 17995) applied in parallel: time required for Campylobacter identification was reduced of 4 days.  相似文献   

15.
Low stream flows in the Fenton River, part of a hydrogeological setting characterized by glacial stratified drift, forces the University of Connecticut to frequently reduce groundwater withdrawals during the months of June–October. The objective of this study was to investigate stream/aquifer interactions in such a hydrogeologic system in order to increase water withdrawals while minimizing adverse impacts to in-stream flow. A groundwater flow model was developed using MODFLOW to investigate the influence of well location and pumping timing on in-stream flow in the vicinity of the water supply wells. The numerical model comprised detailed geophysical data and decadal hydrologic data (2000–2009) to assess well placement, rest periods and cyclical pumping. The relocation of a water supply well up to 228 m from the river had a positive but minimal improvement to stream flows (<2.83 L/s). When the well field was shut off for more than 45 days, stream flows returned to the no pumping condition with only slight impact at 30 days, whereas a 30 day rest period gave 4 weeks of dampened pumping influence on stream flows. A management scenario of 1 week cyclical pumping between two water supply wells following a 45 day rest period can allow for current restriction thresholds to be reduced by 28.3 L/s with minimal impact to stream flows (7.36 L/s) and would allow additional water to be pumped for all years in which there was a demand for water.  相似文献   

16.
The annual hydrograph of large rivers, including flood pulses and low‐flow periods, is believed to play a primary role in the productivity of biota associated with these ecosystems. We investigated the relationship between river hydrology and Interior least tern (Sterna antillarum) reproductive success on the Lower Mississippi River from April to July 1986–1993. The number of fledglings produced per adult pair was negatively correlated with July mean (r=?0.95, p=0.0004) and July maximum river elevation (r=?0.97, p=0.0001), but no other aspects of river hydrology were related to tern reproduction. Low‐water elevations in July may benefit least tern reproductive success by increasing sand island area or the area of shallow‐water habitat that surrounds islands. Loss of deep‐water habitats in conjunction with an increase in shallow habitat during stage decreases may concentrate fish prey in shallow‐water habitats and backwater areas, thereby increasing food availability during chick‐rearing. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
To improve the accuracy of hydrological simulations in the groundwater overexploitation zone of North China, it is necessary to study the characteristics of shallow aquifer recharge on daily scale. Three shallow aquifer recharge indices were used to quantify shallow aquifer recharge in two ways. The recharge coefficient was used to quantify the amount of shallow aquifer recharge. The recharge duration and water table rise coefficient were used to quantify the recharge temporal process. The Spearman rank correlation coefficient and regression analysis were used to determine the relationships between aquifer water table depth (WTD), rainfall, and shallow aquifer recharge. The Jiangjiang River Basin, a tributary of the Haihe River, was selected as the study area. The results showed that the recharge coefficient first increased, then decreased, and finally leveled off as WTD increased. When WTD was between 5 and 6 m, the recharge coefficient reached its maximum (approximately 0.3). When WTD was greater than 10 m, the recharge coefficient remained stable (around 0.12). With regard to the sources and forms of recharge, preferential flow was dominant in the areas near the extraction wells. In contrast, plug flow became dominant in the areas distant from the wells. With the reduction of rainfall duration, the proportion of preferential flow contributing to aquifer recharge increased. With the increase of rainfall amount, the duration of aquifer recharge lengthened.  相似文献   

18.
The Oconee River in middle Georgia, U.S.A., has been regulated by the Sinclair Dam since 1953. Since then, the habitat of the lower Oconee River has been altered and the river has become more incised. The altered environmental conditions of the Oconee River may limit the success of various fish populations. Some obligate riverine fishes may be good indicator species for assessing river system integrity because they are intolerant to unfavourable conditions. For example, many sucker species require clean gravel for feeding and reproduction. Further, age‐0 fishes are more vulnerable than adults to flow alterations because of their limited ability to react to such conditions. In this study, we investigated the relationship between abundance and growth of age‐0 carpsuckers to river discharge in the Oconee River. A beach seine was used to collect age‐0 carpsuckers (Carpiodes spp.) from littoral zones of the lower Oconee River from May through July of 1995 to 2001. Regression models were used to assess whether 12 river discharge categories (e.g. peak, low, seasonal flows) influenced age‐0 carpsucker abundance or instantaneous growth. Our analysis indicated that abundance of age‐0 carpsuckers was significantly negatively related to number of days river discharge was >85 m3 s?1(r2 = 0.61, p = 0.04). Estimates of instantaneous growth ranged from 0.10 to 0.90. Instantaneous growth rates were significantly positively related to summer river discharge (r2 = 0.95, p <0.01). These results suggest that (1) moderate flows during spawning and rearing are important for producing strong‐year classes of carpsuckers, and (2) river discharge is variable among years, with suitable flows for strong year‐classes of carpsuckers occurring every few years. River management should attempt to regulate river discharge to simulate historic flows typical for the region when possible. Such an approach is best achieved when regional climatic conditions are considered. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

19.
The Walla Walla Basin, in Eastern Oregon and Washington, USA, faces challenges in sustaining an agricultural water supply while maintaining sufficient flow in the Walla Walla River for endangered fish populations. Minimum summer river flow of 0.71 m3/s is required, forcing irrigators to substitute groundwater from a declining aquifer for lost surface water diversion. Managed Aquifer Recharge (MAR) was initiated in 2004 attempting to restore groundwater levels and improve agricultural viability. The Integrated Water Flow Model (IWFM) was used to compute surface and shallow groundwater conditions in the basin under water management scenarios with varying water use, MAR, and allowable minimum river flow. A mean increase of 1.5 m of groundwater elevation, or 1.5 % of total aquifer storage, was predicted over the model area when comparing maximum MAR and no MAR scenarios where minimum river flow was increased from current level. When comparing these scenarios a 53 % greater summer flow in springs was predicted with the use of MAR. Results indicate MAR can supplement irrigation supply while stabilizing groundwater levels and increasing summer streamflow. Potential increase in long-term groundwater storage is limited by the high transmissivity of the aquifer material. Increased MAR caused increased groundwater discharge through springs and stream beds, benefiting aquatic habitat rather than building long-term aquifer storage. Judicious siting of recharge basins may be a means of increasing the effectiveness of MAR in the basin.  相似文献   

20.
Implementation of the water-sediment regulation (WSR) scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distribution and coastal morphology of the Yellow River Estuary. Using coastline delineation and suspended sediment concentration (SSC) retrieval methods, this study investigated water and sediment changes, identified detailed inter-annual and intra-annual variations of the coastline and SSC in the normal period (NP: 1986–2001, before and after the flood season) and WSR period (WSRP: 2002–2013, before and after WSR). The results indicate that (1) the sedimentation in the low reaches of the Yellow River turned into erosion from 2002 onward; (2) the inter-annual coastline changes could be divided into an accretion stage (1986–1996), a slow erosion stage (1996–2002), and a slow accretion stage (2002–2013); (3) an intra-annual coastline extension occurred in the river mouth in most years of the WSRP; and (4) the mean intra-annual accretion area was 0.789 km2 in the NP and 4.73 km2 in the WSRP, and the mean SSC increased from 238 mg/L to 293 mg/L in the NP and from 192 mg/L to 264 mg/L in the WSRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号