首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many lotic fish species use natural patterns of variation in discharge and temperature as spawning cues, and these natural patterns are often altered by river regulation. The effects of spring discharge and water temperature variation on the spawning of shovelnose sturgeon Scaphirhynchus platorynchus have not been well documented. From 2006 through 2009, we had the opportunity to study the effects of experimental discharge levels on shovelnose sturgeon spawning in the lower Marias River, a regulated tributary to the Missouri River in Montana. In 2006, shovelnose sturgeon spawned in the Marias River in conjunction with the ascending, peak (134 m3/s) and descending portions of the spring hydrograph and water temperatures from 16 °C to 19 °C. In 2008, shovelnose sturgeon spawned in conjunction with the peak (118 m3/s) and descending portions of the spring hydrograph and during a prolonged period of increased discharge (28–39 m3/s), coupled with water temperatures from 11 °C to 23 °C in the lower Marias River. No evidence of shovelnose sturgeon spawning was documented in the lower Marias River in 2007 or 2009 when discharge remained low (14 and 20 m3/s) despite water temperatures suitable and optimal (12 °C?24 °C) for shovelnose sturgeon embryo development. A similar relationship between shovelnose sturgeon spawning and discharge was observed in the Teton River. These data suggest that discharge must reach a threshold level (28 m3/s) and should be coupled with water temperatures suitable (12 °C?24 °C) or optimal (16 °C?20 °C) for shovelnose sturgeon embryo development to provide a spawning cue for shovelnose sturgeon in the lower Marias River. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
针对三峡水库蓄水运行后中华鲟自然产卵期逐渐推迟的问题,对影响中华鲟繁殖关键要素水温的因素开展研究。基于三峡大坝及葛洲坝上下游典型断面的水温及气温实测资料,分析了三峡水库蓄水后10年(2003—2012年)的水温变化情势和影响葛洲坝下游中华鲟产卵江段特定时段水温的原因。结果表明:三峡水库蓄水后库区在10月水温高于蓄水前,对下游中华鲟产卵江段水温产生直接影响;局地气温变化与水温情势变化密切相关,是引起中华鲟产卵江段水温上升的根本原因,对水温上升的贡献度约为61%。  相似文献   

3.
A lake sturgeon spawning assessment study conducted in the late 1940s below a dam on the Ottawa River, Canada was repeated over a 3-year period in 2001–2004. The objectives of the survey were to determine whether lake sturgeon, a long-lived species, continue to congregate at this location during the spawning period and to assess changes in the characteristics of the spawning population since 1949. Eighty-three lake sturgeon were caught, including 10 recaptures, over the 3-year survey with the majority of sturgeon sampled in 2003. The Schnabel population estimate for the 2003 spawning stock was 202 (93–378; 95% C.I.). Mean size of lake sturgeon sampled in the current survey (118.0 ± 12.8 S.D.) was greater than in the historical survey (101.7 ± 11.5 S.D.). However, lake sturgeon < 110 cm TL comprised only 31.1% of the sturgeon sampled in this survey whereas they comprised the majority of the catch in 1949 (69.9%), suggesting the population is experiencing a recruitment problem. Weight-length relationships of lake sturgeon did not vary between studies. Growth differed between studies which may be a function of aging error.  相似文献   

4.
Lake sturgeon (Acipenser fulvescens) can migrate long distances to spawn, but many populations currently spawn in systems where the length of accessible riverine migratory habitat has been greatly reduced by dam construction. With the increased prevalence of shortened rivers, focusing on migratory dynamics in short rivers (<30 km) is beneficial to understanding the migratory needs of lake sturgeon populations. Here we document male lake sturgeon movements during the spawning period in the Winooski River, Vermont, USA; a river with only 17 km to the first natural upstream barrier. Male lake sturgeon were acoustically tagged (n = 25, 1215–1470 mm TL) and tracked using five to nine stationary receivers from 2017 to 2019. River discharge, temperature, the lagged effect of temperature (3-day), and time of day were significant factors describing upstream movements of tagged fish. Migrating male lake sturgeon (n = 10 in 2017, n = 18 in 2018, and n = 17 in 2019) displayed general movement patterns during the spawning period that included a single run upstream to the spawning site (60%), upstream and downstream movements throughout the river during the season (20%), or multiple runs made up the entire length of the spawning tributary to the spawning site (20%). No multi-run males were observed during 2018 when discharge was less flashy (i.e., fewer steep increases and declines in discharge) than in 2017 and 2019. These results suggest that the prevalence of multi-run spawning behavior of male lake sturgeon is related to flow conditions.  相似文献   

5.
American shad Alosa sapidissima populations along the Atlantic Coast of North America are near historic lows despite management actions designed to rebuild stocks. Florida's St. Johns River supports the southernmost population of this anadromous species, and as water use in the St. Johns basin increases, there is concern that their spawning may be affected. We assessed American Shad movement and habitat use in the St. Johns River during three spawning migrations (2009–2011) using acoustic telemetry. Spatial distribution patterns of telemetered shad during each year were largely similar; most shad were located within reaches from Lake Monroe (rkm 276) to just downstream of Lake Harney (rkm 308); some individuals made excursions as far upstream as Lake Poinsett (rkm 386+). Water levels varied among years (low‐water level: 2009 and 2011; higher water level: 2010), and lower water levels may have contributed to an apparent constriction of spawning grounds in 2009 and 2011. Telemetered shad selected deeper sections of river with faster currents. Our results verified that the primary spawning grounds for American shad in the St. Johns have not changed substantially in the past 50 years; thus, these areas should rank high for habitat protection. We also demonstrated linkages between American Shad distribution and habitat use and river flow that should be further developed and considered in future water withdrawal, regulation, or conservation efforts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
An investigation of the spawning sites of European grayling, Thymallus thymallus (L.), in two Swedish rivers revealed narrow range in their physical parameters. The bottom substrate was composed of 10–20 per cent sand, 50–70 per cent gravel (<2cm), 20–30 per cent stones (2–10cm), and a few bigger stones (>10cm in diameter). Eggs were found only where the gravel thickness was more than 5 cm. The depth varied between 30–50cm. Mean depth for 22 different spawning sites was 36cm. The water velocity varied between 23–90cm s?1, average 54 cm s?1. The temperature at the start of spawning was 3.9°C and at the end it was about 9°C. The results indicate the narrow range in physical parameters at the spawning sites. Small changes in the environment caused by regulation of river flow or water level may disturb the spawning behaviour of grayling and cause a decrease in population size or even extinction.  相似文献   

7.
We evaluated temperature tolerance in age‐0 pallid and shovelnose sturgeon (Scaphirhynchus albus and Scaphirhynchus platorynchus), two species that occur sympatrically in the Missouri and Mississippi Rivers. Fish (0.04–18 g) were acclimated to water temperatures of 13, 18 or 24 °C to quantify temperatures associated with lethal thermal maxima (LTM). The results show that no difference in thermal tolerance existed between the two sturgeon species, but that LTM was significantly related to body mass and acclimation temperature. Multiple linear regression analysis was used to estimate LTM, and outputs from the model were compared with water temperatures measured in the shallow water habitat (SWH) of the Missouri River. Observed SWH temperatures were not found to yield LTM conditions. The model developed here is to serve as a general guideline in the development of future SWH. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Hypolimnial releases from dams during periods of thermal stratification modify the downstream riverine thermal regime by decreasing water temperature and reducing natural diel thermal variability. This cold‐water thermal pollution in rivers can persist for hundreds of kilometres downstream of dams and impact important ecological processes such as fish spawning. To mitigate this problem, a first‐of‐its‐kind thermal curtain was fitted to the large bottom release Burrendong Dam on the Macquarie River, Australia. The thermal curtain acts by directing warmer, near‐surface epilimnial water to the low‐level hypolimnial offtake. This study aimed to test the efficacy of the thermal curtain by measuring temperatures before and after the curtains installation, quantifying the magnitude and extent of cold‐water thermal pollution along the Macquarie River downstream of Burrendong Dam. Epilimnial releases with use of the curtain increased diel temperature ranges and the mean monthly water temperature below the dam. Epilimnial releases with use of the curtain increased diel temperature ranges from 0.9°C to 2.5°C and reduced the difference between the mean monthly water temperature of an upstream control and a downstream site by up to 3.5°C. A comparison of the monthly temperature means along the river, indicated that thermal recovery, whereby temperatures returned to within the natural range of upstream temperatures occurred 45 km downstream of the dam during summer when the thermal curtain was deployed, compared with approximately 200 km prior to deployment of the curtain. Our study suggests that the use of thermal curtains can reduce cold‐water thermal pollution and improve ecological outcomes for river ecosystems downstream of dams.  相似文献   

9.
Lake whitefish Coregonus clupeaformis are a native coldwater species supporting important recreational and commercial fisheries in the Laurentian Great Lakes. Climate-related changes in water temperature may have important implications for the future sustainability of these fisheries. However, projecting future habitat availability is difficult because limited information is available on lake whitefish thermal ecology in the region. In this study, archival temperature loggers were implanted into 400 lake whitefish from northwestern Lake Michigan, including Green Bay, during October–November 2017. Loggers recorded temperature for 11 months at 4-hr intervals. Thirteen recovered temperature loggers were used in analyses. In winter (1 December–31 March), temperatures occupied by lake whitefish ranged from 0 to 8.0 °C, while in spring (1 April–31 May) temperatures ranged from 0 to 20.0 °C. In summer (1 June–15 September) and fall (16 September–7 November), lake whitefish occupied temperatures of 4–21.5 and 4–21.0 °C, respectively. Average temperatures in summer (10.8 °C) were within the previously proposed optimal temperature range (10–14 °C) and broad thermal niche (7–17 °C); however, 58% of observations were outside the optimal temperature range and 11% of observations were outside the broad thermal niche. Our results suggest that lake whitefish from northwestern Lake Michigan inhabit temperatures both above and below previously reported expected temperature ranges. This study provides initial insights on lake whitefish thermal ecology in Lake Michigan and can be used as a baseline for future work aimed at determining how lake whitefish habitat availability may change in the future.  相似文献   

10.
B. Soto 《河流研究与利用》2016,32(6):1355-1364
A nonlinear regression model was used to estimate mean daily stream water temperature in 11 rivers of the North of the Iberian Peninsula employing as the only predictor variable the air temperature. The weighted mean value of air temperature of a variable number of preceding days was used as a predictor variable. To obtain the weight of air temperature of each preceding day, initially, we calculate the weight of air temperature of current day. For this, we have included in the model the air temperature of current day and the water temperature of preceding day—representative of long‐term effects of air temperature on current water temperature. Subsequently, the weight of remaining days was calculated by a negative exponential function. The weight of air temperature of current day ranges between 0.28 and 0.10, and it was correlated to length of river (R2 = 0.69) and to time of concentration (R2 = 0.66). This fact implies that the number of preceding days required to obtain a good estimation differs across the rivers. The results show that the mean root mean square error (RMSE) between observed and estimated water temperatures was 1.23 °C (±0.30 °C), employing a number of days so that the sum of their weights was 0.65. For the validation period, RMSE was 1.20 °C (±0.18 °C). For the period 1986–2013, estimated temperature of water was 0.6 °C higher than that estimated for the period 1950–1986. This increase value is slightly lower than that observed in the air temperature (0.8 °C). On the other hand, during the period 1986–2013, water temperature showed a rate of increase of 0.16 °C/decade, similar to the increase of air temperature (0.15 °C/decade). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Lake sturgeon Acipenser fulvescens were extirpated from the St. Louis River Estuary (SLRE) by the early 1900’s due to overfishing and habitat degradation. A restoration stocking program began in 1983, and continued almost annually until 2000. Lake sturgeon stocked into the SLRE were primarily obtained from the Wolf River (Lake Winnebago) genetic stock (n = 861,000) but some sturgeon were obtained from the Sturgeon River (Lake Superior) genetic stock (n = 61,380). Recently, spawning and natural recruitment has been documented near the Fond du Lac Dam, the upstream limit for lake sturgeon migrating from Lake Superior. However, the genetic origin of lake sturgeon spawning in the SLRE was unknown. Our objectives were to determine (1) the genetic origins and (2) genetic diversity of lake sturgeon spawning in the SLRE. Using both GENECLASS2 and ONCOR, a majority (79–81%) of lake sturgeon captured in the SLRE during spawning (2016–2018) assigned to the Wolf River genetic stock (Lake Winnebago) with greater than 80% probability using established microsatellites and a standardized genetic baseline. Other genetic stocks present (≥1%) included the Pic and Goulais rivers and possibly the Black Sturgeon River (identified using GENECLASS2, but not ONCOR); no fish assigned to the Sturgeon River using either method. Genetic diversity metrics showed that the SLRE lake sturgeon population was similar to other Lake Superior lake sturgeon populations. Overall, the SLRE Sturgeon population appears headed towards recovery. Adaptive management practices currently being employed should be continued to help guide further recovery of this population.  相似文献   

12.
The St. Marys River connects Lake Superior to Lake Huron, comprising the international border between Michigan, United States, and Ontario, Canada. This Great Lakes connecting channel naturally encompasses various habitats including lakes, wetlands, islands, tributaries, side channels, and main channels. The St. Marys River Rapids are shallow rock areas with high flow velocities (>1 m/s) in the upper river adjacent to the navigation locks and electric power generating stations, while the Little Rapids are shallow, recently restored rocky areas with lower velocities located about 7 km downstream. The St. Marys River Rapids provide important spawning habitat for several native and introduced fishes, but spawning by lake sturgeon (Acipenser fulvescens) was not previously documented. We sampled for lake sturgeon eggs and larvae in both locations during June and July 2018–2019 using weekly benthic egg mat lifts and overnight D-frame larval fish drift nets. Viable lake sturgeon eggs (11 in 2018, 45 in 2019) were collected in the tailrace of a hydroelectric power facility adjacent to the St. Marys River Rapids. Larval lake sturgeon (21 in 2018, 1 in 2019) were collected in the same area as the eggs. Neither lake sturgeon eggs nor larvae were collected at Little Rapids in either year. Our results are the first documentation of successful lake sturgeon spawning and larval drift in the upper St. Marys River. While our observations showed spawning in a human-made tailrace area, the fate of larvae produced here is unknown and warrants further research.  相似文献   

13.
Water temperature is a critical ecological indicator; however, few studies have statistically modeled century-scale trends in riverine or estuarine water temperature, or their cause. Here, we recover, digitize, and analyze archival temperature measurements from the 1850s onward to investigate how and why water temperatures in the lower Columbia River are changing. To infill data gaps and explore changes, we develop regression models of daily historical Columbia River water temperature using time-lagged river flow and air temperature as the independent variables. Models were developed for three time periods (mid-19th, mid-20th, and early 21st century), using archival and modern measurements (1854–1876; 1938–present). Daily and monthly averaged root-mean-square errors overall are 0.89°C and 0.77°C, respectively for the 1938–2018 period. Results suggest that annual averaged water temperature increased by 2.2°C ± 0.2°C since the 1850s, a rate of 1.3°C ± 0.1°C/century. Increased water temperatures are seasonally dependent. An increase of approximately 2.0°C ± 0.2°C/century occurs in the July–Dec time-frame, while springtime trends are statistically insignificant. Rising temperatures change the probability of exceeding ecologically important thresholds; since the 1850s, the number of days with water temperatures over 20°C increased from ~5 to 60 per year, while the number below 2°C decreased from ~10 to 0 days/per year. Overall, the modern system is warmer, but exhibits less temperature variability. The reservoir system reduces sensitivity to short-term atmospheric forcing. Statistical experiments within our modeling framework suggest that increased water temperature is driven by warming air temperatures (~29%), altered river flow (~14%), and water resources management (~57%).  相似文献   

14.
葛洲坝下游中华鲟产卵场的水文学模型   总被引:1,自引:0,他引:1  
根据对(每年9~11月)葛洲坝下游中华鲟产卵场水位-流量过程的分析,构建了多项水文参数与中华鲟产卵量的耦合模型,分析了水位、流量等水文参数改变对中华鲟产卵繁殖的影响,为三峡工程的调度提供了设计生态流量、生态流速、生态水深的依据.  相似文献   

15.
陶洁  陈凯麒  王东胜 《水利学报》2017,48(10):1250-1259
中华鲟面临严重的种群资源问题,明确中华鲟产卵场的水流特性可为产卵场修复和自然种群挽救提供更准确合理的技术参数。研究运用流体力学软件Fluent模拟葛洲坝坝下中华鲟产卵场产卵时期的三维水流过程,分析流速、涡量、湍动能等水力学参数在产卵场不同功能区内的变化规律和取值范围。结果表明:不同功能区水力学参数的取值范围不同,对比各取值范围发现底层流速基本满足产卵受精区播卵区着卵孵化区,而播卵区的流速垂向变化幅度总体大于产卵受精区;涡量基本满足播卵区产卵受精区着卵孵化区;湍动激烈区基本位于水体的上中层,底层湍动能在各功能区变化不大,特别是着卵孵化区的湍动能没有明显区别于播卵区。葛洲坝坝下产卵场水流状况不是特别有利于中华鲟卵的受精散播和附着孵化,为了进一步明确中华鲟产卵繁殖的水流特性,需要继续开展大量的模拟、对比分析工作。  相似文献   

16.
The effects of cold water releases, as a by‐product of storing irrigation water in large dams, has been a source of great concern for its impact on native freshwater fish for some time. The Mitta Mitta River, northeast Victoria, is impacted by altered thermal regimes downstream of the fourth largest dam in Australia, Dartmouth dam, with some daily temperatures 10–12°C below normal. Murray cod (Maccullochella peelii peelii) were endemic to the Mitta Mitta River; however, resident Murray cod have not been found in this river since 1992. The response of eggs and hatched larvae from Murray cod to different temperature gradients of water were measured and the post‐spawning survival recorded. As a case study, post‐spawning survival was then inferred from flow data for each year of operation of Dartmouth Dam, recorded since first operation in 1978, and included in a stochastic population model to explore the impact of the altered (historical) thermal regime on population viability. Experimental results revealed no egg and larval survival below 13°C and predicted historical temperature regimes point to more than 15 years of low temperatures in the Mitta Mitta River. Population modelling indicates that the impact of cold water releases on post‐spawning survival is a significant threatening process to the viability of a Murray cod population. Additionally, we consider changes to the thermal regime to explore how the thermal impact of large dams may be minimized on downstream fish populations through incrementally increasing the temperature of the releases. The modelled Murray cod population responds to minor increases in the thermal regime; however, threats are not completely removed until an increase of at least 5–6°C. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Shortnose sturgeon (Acipenser brevirostrum) populations were decimated by a variety of anthropogenic activities throughout much of the 20th century. Understanding the spatial and temporal dynamics of spawning migrations within natal rivers is a critical information gap with regard to habitat protection and ultimately, species recovery. The objectives of this study were to document and describe seasonal movements of shortnose sturgeon in the Altamaha River system, Georgia. Passive acoustic telemetry was used to monitor the movements of 40 adult individuals from April 2011 through February 2014. Telemetry data revealed that during much of the year, the adults resided within the tidally influenced portion of the river, with most detections occurring near the freshwater–saltwater interface. Upstream movements to potential spawning habitat occurred during winter and early spring, and most fish returned to the lower estuary by April. Upstream migrations appeared to be triggered by environmental cues and were initiated when mean weekly temperatures in the lower Altamaha River were 11.6–16.9 °C. Unlike spawning migrations documented in northern rivers, the pattern of movement observed in this study was a single‐step migration without an apparent resting or staging period. Upstream migrations during nonspawning months were also observed and appeared to correspond with increasing discharge, which potentially resulted in increased channel navigability and habitat availability in nondrought years. This study further illustrates the clinal variations in life history typical of the species and may have important implications on river‐specific strategies for species recovery.  相似文献   

18.
The Great Lakes Basin plays an important role in the economy and society of the United States and Canada, and climate change in this region may affect many sectors. In this study, six GCM simulations were downscaled to resolve the Great Lakes using a regional climate model (RCM) with 25 km × 25 km resolution. This model was used to project changes in temperature and precipitation during the mid-century (2040–2069) and late-century (2070–2099) over the Great Lakes basin region with reference to a baseline of 1980–2009. The whole-basin annual mean temperature is projected to increase 2.1 °C to 4.0 °C above the baseline during the mid-century, and 3.3 °C to 6.0 °C during the late-century. Summer temperatures in the southern portion of the basin are projected to increase more than the temperatures in the northern portion of the basin; whereas winter temperatures are projected to increase more in the north than in the south. Estimates of the whole-basin annual precipitation with respect to the baseline vary from −3.0% to 16.5% during the mid-century and −2.9% to 21.6% during the late-century, respectively. Future summer precipitation in southwestern areas of this region is expected to decrease by 20%–30% compared to the baseline, but winter precipitation (mostly snow) is expected to increase by 11.6% and 15.4% during the mid-century and late-century. This study highlights the effects of the large expanses of water (such as the Great Lakes) on regional climate projections and the associated uncertainties of climate change.  相似文献   

19.
Asian carps are threatening to establish in the Great Lakes basin and the examination of factors leading to spawning success is vital for preventive efforts. Hydrodynamic modelling can determine if successful hatching of carp eggs can occur in a tributary, by predicting egg movement during a spawning event to see if hatching can occur before eggs settle. A 3-D hydrodynamic model, coupled with a Lagrangian particle tracker, was used to assess hatching rates of three Asian carp species (bighead, grass, and silver carps) in different temperature and flow scenarios in the east Don River, a potential spawning tributary to Lake Ontario. In-river hatching rates were highest in scenarios with warmer summer water temperatures (23–25 °C) and flow magnitudes of 15–35 m3/s, which occur at least once every year. Using a 3-D hydrodynamic model allowed the inclusion of low-velocity zones where eggs become trapped in lower flow scenarios, thereby reducing modelled hatching success. In-river hatching rates were significantly reduced when the spawning location was moved close to the mouth of the river, with no modelled hatching if spawning occurred in the lower 8 km of the Don River, indicating that preventing Asian carp movement upstream would viably reduce the chances of successfully spawning occurring in this tributary. The magnitude of reduction in spawning success caused by limiting Asian carp passage upstream can guide preventative strategies and the method of using a 3-D hydrodynamic model as a predictive tool could be applied in similar tributaries across the Great Lakes basin.  相似文献   

20.
Lake sturgeon (Acipenser fulvescens) were a candidate for reintroduction in the Maumee River, Ohio, where they were historically abundant, but are now functionally extirpated. Our objective was to determine if current habitat quality and quantity could support reintroduction efforts. We developed a spatially explicit habitat suitability index model for two lake sturgeon life stages: spawning adult and age-0 fish. To estimate habitat quality, substrate, water depth, and water velocity were assessed and integrated into suitability index values to delineate good, moderate, and poor areas for each life stage. Each habitat characteristic was mapped and combined to provide an overall assessment of habitat suitability, quantity, and location. Model results indicated 208 ha (10.2% of all habitat) of good adult spawning habitat (e.g., coarse substrates, depths between 0.3 and 8 m, and velocity between 0.5 and 1 m/s) and 529 ha (28.2% of all habitat) of good age-0 habitat (e.g., fine substrates, depths between 0.2 and 6 m, and velocity between 0.1 and 0.7 m/s). Good age-0 habitat was located mostly downstream of good spawning habitat, which will provide nursery areas for age-0 fish after hatch. Our models suggested habitat is not limiting for lake sturgeon and efforts to reintroduce this species into the Maumee River, and for the first time in the Lake Erie basin, were supported. The results of this work supported reintroduction efforts that began in 2018.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号