首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper introduces a robust adaptive fractional‐order non‐singular fast terminal sliding mode control (RFO‐TSM) for a lower‐limb exoskeleton system subject to unknown external disturbances and uncertainties. The referred RFO‐TSM is developed in consideration of the advantages of fractional‐order and non‐singular fast terminal sliding mode control (FONTSM): fractional‐order is used to obtain good tracking performance, while the non‐singular fast TSM is employed to achieve fast finite‐time convergence, non‐singularity and reducing chattering phenomenon in control input. In particular, an adaptive scheme is formulated with FONTSM to deal with uncertain dynamics of exoskeleton under unknown external disturbances, which makes the system robust. Moreover, an asymptotical stability analysis of the closed‐loop system is validated by Lyapunov proposition, which guarantees the sliding condition. Lastly, the efficacy of the proposed method is verified through numerical simulations in comparison with advanced and classical methods.  相似文献   

2.
In this paper, a novel robust sliding mode learning control scheme is developed for a class of non‐minimum phase nonlinear systems with uncertain dynamics. It is shown that the proposed sliding mode learning controller, designed based on the most recent information of the stability status of the closed‐loop system, is capable of adjusting the control signal to drive the sliding variable to reach the sliding surface in finite time and remain on it thereafter. The closed‐loop dynamics including both observable and non‐observable ones are then guaranteed to asymptotically converge to zero in the sliding mode. The developed learning control method possesses many appealing features including chattering‐free characteristic, strong robustness with respect to uncertainties. More importantly, the prior information of the bounds of uncertainties is no longer required in designing the controller. Numerical examples are presented in comparison with the conventional sliding mode control and backstepping control approaches to illustrate the effectiveness of the proposed control methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper develops a novel adaptive neural integral sliding‐mode control to enhance the tracking performance of fully actuated uncertain surface vessels. The proposed method is built based on an integrating between the benefits of the approximation capability of neural network (NN) and the high robustness and precision of the integral sliding‐mode control (ISMC). In this paper, the design of NN, which is used to approximate the unknown dynamics, is simplified such that just only one simple adaptive rule is needed. The ISMC, which can eliminate the reaching phase and offer higher tracking performance compared to the conventional sliding‐mode control, is designed such that the system robust against the approximation error and stabilize the whole system. The design procedure of the proposed controller is constructed according to the backstepping control technique so that the stability of the closed‐loop system is guaranteed based on Lyapunov criteria. The proposed method is then tested on a simulated vessel system using computer simulation and compared with other state‐of‐the‐art methods. The comparison results demonstrate the superior performance of the proposed approach.  相似文献   

4.
This paper describes 2 schemes for a fault‐tolerant control using a novel optimal sliding‐mode control, which can also be employed as actuator redundancy management for overactuated uncertain linear systems. By using the effectiveness level of the actuators in the performance indexes, 2 schemes for redistributing the control effort among the remaining (redundant or nonfaulty) set of actuators are constructed based on an ‐based optimal sliding‐mode control. In contrast to the current sliding‐mode fault‐tolerant control design methods, in these new schemes, the level of control effort required to maintain sliding is penalised. The proposed optimal sliding‐mode fault‐tolerant control design schemes are implemented in 2 stages. In the first stage, a state feedback gain is derived using an LMI‐based scheme that can assign a number of the closed‐loop eigenvalues to a known value whilst satisfying performance specifications. The sliding function matrix related to the particular state feedback derived in the first stage is obtained in the second stage. The difference between the 2 schemes proposed for the sliding‐mode fault‐tolerant control is that the second one includes a separate control allocation module, which makes it easier to apply actuator constraints to the problem. Moreover, it will be shown that, with the second scheme, we can deal with actuator faults or even failures without controller reconfiguration. We further discuss the advantages and disadvantages of the 2 schemes in more details. The effectiveness of the proposed schemes are illustrated with numerical examples.  相似文献   

5.
A new discrete‐time adaptive global sliding mode control (SMC) scheme combined with a state observer is proposed for the robust stabilization of uncertain nonlinear systems with mismatched time delays and input nonlinearity. A state observer is developed to estimate the unmeasured system states. By using Lyapunov stability theorem and linear matrix inequality (LMI), the condition for the existence of quasi‐sliding mode is derived and the stability of the overall closed‐loop system is guaranteed. Finally, simulation results are presented to demonstrate the validity of the proposed scheme.  相似文献   

6.
A robust fault‐tolerant attitude control scheme is proposed for a launch vehicle (LV) in the presence of unknown external disturbances, mismodeling dynamics, actuator faults, and actuator's constraints. The input‐output representation is employed to describe the rotational dynamics of LV rendering three independently decoupled second order single‐input‐single‐output (SISO) systems. In the differential algebraic framework, general proportional integral (GPI) observers are used for the estimations of the states and of the generalized disturbances, which include internal perturbations, external disturbances, and unknown actuator failures. In order to avoid the defects of the conventional sliding surface, a new nonlinear integral sliding manifold is introduced for the robust fault‐tolerant sliding mode controller design. The stability of the GPI observer and that of the closed‐loop system are guaranteed by Lyapunov's indirect and direct methods, respectively. The convincing numerical simulation results demonstrate the proposed control scheme is with high attitude tracking performance in the presence of various disturbances, actuator faults, and actuator constraints.  相似文献   

7.
This paper is concerned with the sliding mode control of uncertain nonlinear systems against actuator faults and external disturbances based on delta operator approach. The nonlinearity, actuator fault, and external disturbance are considered in this study, and the bounds of Euclidean norms of the nonlinearity and the specific lower and upper bounds of the actuator faults and the disturbances are unknown knowledge. Our attention is mainly focused on designing a sliding mode fault‐tolerant controller to compensate the effects from the nonlinearity, unknown actuator fault, and external disturbance. Based on Lyapunov stability theory, a novel‐adaptive fault‐tolerant sliding mode control law is deigned such that the resulting closed loop delta operator system is finite‐time convergence and the actuator faults can be tolerated, simultaneously. Finally, simulation results are provided to verify the effectiveness of the proposed control design scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Input shaping technique is widely used in reducing or eliminating residual vibration of flexible structures. It is easy to implement and achieve the exact elimination of the residual vibration if the dynamics of the system are known accurately. However, it is not very robust to parameter uncertainties and external disturbances. In this paper, a closed‐loop input shaping method is developed for reducing or eliminating residual vibration of flexible structure systems with parameter uncertainties and external disturbances. The algorithm is based on input shaping control and discrete‐time sliding mode control. It is shown that the proposed scheme guarantees closed‐loop system stability, and yields good performance and robustness in the presence of parameter uncertainties and external disturbances as well. The selection of switching surface and the existence of sliding mode are two important issues, which have been addressed. The knowledge of upper bound of uncertainties is not required. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed closed‐loop input shaping control scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Novel sliding mode observer (SMO) and robust nonlinear control methods are presented, which are shown to achieve finite‐time state estimation and asymptotic regulation of a fluid flow system. To facilitate the design and analysis of the closed‐loop active flow control (AFC) system, proper orthogonal decomposition–based model order reduction is utilized to express the Navier‐Stokes partial differential equations as a set of nonlinear ordinary differential equations. The resulting reduced‐order model contains a measurement equation that is in a nonstandard mathematical form. This challenge is mitigated through the detailed design and analysis of an SMO. The observer is shown to achieve finite‐time estimation of the unmeasurable states of the reduced‐order model using direct sensor measurements of the flow field velocity. The estimated states are utilized as feedback measurements in a closed‐loop AFC system. To address the practical challenge of actuator bandwidth limitations, the control law is designed to be continuous. A rigorous Lyapunov‐based stability analysis is presented to prove that the closed‐loop flow estimation and control method achieves asymptotic regulation of a fluid flow field to a prescribed state. Numerical simulation results are also provided to demonstrate the performance of the proposed closed‐loop AFC system, comparing 2 different designs for the SMO.  相似文献   

10.
A global sliding‐mode control (GSMC) scheme is proposed to provide a framework for ensuring the existence of a sliding mode throughout an entire response. Based on this framework, robust eigenvalue‐assignment GSMC (REA‐GSMC) is proposed to robustly assign closed‐loop eigenvalues that must be real. The eigenvalues being all real, however, leads to sluggish responses. According to most error criteria such as IAE, ISE, and ITAE, the optimum system should have complex eigenvalues. This paper proposes a GSMC scheme with generalized sliding dynamics, referred to as Generalized GSMC, in order to release the previous constraint on the REA‐GSMC. Thus, the Generalized GSMC can be designed to achieve a system that is both robust and optimum in the sense that it minimizes certain error performance indices in spite of the presence of system uncertainties. Experiments were conducted on a two‐link direct‐drive manipulator to demonstrate the effectiveness of the proposed scheme. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
In this work, the problem of designing a control scheme capable of controlling dynamical systems with unknown time‐varying parameters and disturbances is proposed. In contrast with other works, based on two techniques, ie, adaptive backstepping and sliding modes, an improved method that guarantees the output asymptotic tracking of a smooth reference signal, the stability of the closed‐loop system, and the identification errors' boundedness is developed. By means of sliding mode observers, the adaptation errors' required information is extracted and injected to adaptive laws. The behavior of the proposed control scheme is analyzed by the Lyapunov method. The performance of the proposed system is verified with an academic example.  相似文献   

12.
For the high precise tracking control purpose of a cable‐driven manipulator under lumped uncertainties, a novel adaptive fractional‐order nonsingular terminal sliding mode control scheme based on time delay estimation (TDE) is proposed and investigated in this paper. The proposed control scheme mainly has three elements, ie, a TDE element applied to properly compensate the lumped unknown dynamics of the system resulting in a fascinating model‐free feature; a fractional‐order nonsingular terminal sliding mode (FONTSM) surface element used to ensure high precision in the steady phase; and a combined reaching law with adaptive technique adopted to obtain fast convergence and high precision and chatter reduction under complex lumped disturbance. Stability of the closed‐loop control system is analyzed with the Lyapunov stability theory. Comparative simulations and experiments were performed to demonstrate the effectiveness of our proposed control scheme using 2‐DOF (degree of freedom) of a cable‐driven manipulator named Polaris‐I. Corresponding results show that our proposed method can ensure faster convergence, higher precision, and better robustness against complex lumped disturbance than the existing TDE‐based FONTSM and continuous FONTSM control schemes.  相似文献   

13.
This paper presents a novel scheme for identification and control of an electro‐hydraulic system using recurrent neural networks. The proposed neural network has the nonlinear block control form structure. A sliding‐mode control technique is applied then to design a discontinuous controller, which is able to track a force reference trajectory. Due to the presence of an unmodelled dynamics, the standard sliding‐mode controller produces oscillations (or ‘chattering’) in the closed‐loop system. The second‐order sliding mode is used to eliminate the undesired chattering effect. Simulations are presented to illustrate the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a novel fuzzy adaptive nonlinear fault tolerant control design scheme is proposed for attitude dynamics of quadrotor UAV subjected to four sensor faults (bias, drift, loss of accuracy, loss of effectiveness). The sensor faults in Euler angle loop are transformed equivalently into a mismatched uncertainty vector, and other unknown items involving faults, uncertain parameters and external disturbances in angular velocity loop are lumped into an unknown nonlinear function vector. Fuzzy logic systems with adaptive parameters are used to approximate the mismatched uncertainty and lumped nonlinear function vectors. Dynamic surface control is applied to design the fault tolerant controller, and sliding mode control is introduced to improve the control accuracy. All signals of the closed‐loop control system are proved to be semi‐global uniformly ultimately bounded. Simulations demonstrate the effectiveness of the proposed approach for sensor faults.  相似文献   

15.
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition.  相似文献   

16.
The problem of finite‐time tracking control is studied for uncertain nonlinear mechanical systems. To achieve finite‐time convergence of tracking errors, a simple linear sliding surface based on polynomial reference trajectory is proposed to enable the trajectory tracking errors to converge to zero in a finite time, which is assigned arbitrarily in advance. The sliding mode control technique is employed in the development of the finite‐time controller to guarantee the excellent robustness of the closed‐loop system. The proposed sliding mode scheme eliminates the reaching phase problem, so that the closed‐loop system always holds the invariance property to parametric uncertainties and external disturbances. Lyapunov stability analysis is performed to show the global finite‐time convergence of the tracking errors. A numerical example of a rigid spacecraft attitude tracking problem demonstrates the effectiveness of the proposed controller.  相似文献   

17.
ABSTRACT This paper investigates the function approximation problem by using Walsh functions to establish a Walsh‐basis‐function neural network (WBFNN). The proposed novel system avoids the possible heavy computation problem of a controller usually encountered in adaptive neural controller design. With the developed adaptation scheme combined with the sliding mode control strategy for a class of nonlinear systems, the proposed WBFNN‐based controller can guarantee global stability of the closed‐loop system in the Lyapunov sense. The output tracking error then converges to zero asymptotically, and boundedness of all the signals in the whole system is ensured. Simulation validation for a nonlinear unstable system was performed to verify the effectiveness of the proposed controller design.  相似文献   

18.
19.
In this paper, we present a robust fault‐tolerant control scheme for constrained multisensor linear parameter‐varying systems, subject to bounded disturbances, that utilises multiple sensor fusion. The closed‐loop scheme consists of a tube model predictive control‐based feedback tracking controller and sensor‐estimate fusion strategy, which allows for the reintegration of previously faulty sensors. The active fault‐tolerant fusion‐based mechanism tracks the healthy‐faulty transitions of suitable residual variables by means of set separation and precomputed transition times. The sensor‐estimate pairings are then reconfigured based on available healthy sensors. Under the proposed scheme, robust preservation of closed‐loop system boundedness is guaranteed for a wide range of sensor fault situations. An example is presented to illustrate the performance of the fault‐tolerant control strategy.  相似文献   

20.
A passivity‐based sliding mode control for a class of second‐order nonlinear systems with matched disturbances is proposed in this paper. Firstly, a nonlinear sliding surface is designed using feedback passification, in which the passivity is employed to guarantee the closed‐loop system's stability. The passivity‐based controller comprising a discontinuous term guarantees globally asymptotical convergence to the sliding surface. A sliding mode‐based control law that satisfies the reaching and sliding condition is also developed. Moreover, the passivity‐based sliding mode observer is also developed to effectively estimate the system states. Compared with conventional sliding mode control, the proposed control scheme has a shorter reaching time; and hence, the system performance is less affected by disturbances, thus eliminating the need to increase the control input gain. Finally, simulation results demonstrate the validity of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号