首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
In this paper, a linear parameter‐varying (LPV)‐based model and robust gain‐scheduled structural proportion integral and derivative (PID) control design solution are proposed and applied on a bio‐inspired morphing wing unmanned aerial vehicle (UAV) for the morphing process. In the LPV model method, the authors propose an improved modeling method for LPV systems. The method combines partial linearization and function substitution. Using the proposed method, we can choose the varying parameters simply, thus creating a model that is more flexible and applicable. Then, a robust gain‐scheduled structural PID control design method is given by introducing a structural matrix to design a structural PID controller, which is more consistent with the structure of the PID controller used in practice and has a simpler structure than representative ones in the existing literature. The simulation results show that the developed LPV morphing UAV model is able to catch the response of the original nonlinear model with a smaller error than the existing Jacobian linearization method and the designed controller can maintain stable flights in practice with satisfactory robustness and performance.  相似文献   

2.
In this paper, fixed‐gain feedback linearization controls are presented to stabilize the vehicle lateral dynamics at bifurcation points for both continuous‐time and discrete‐time cases. Based on the assumption of constant driving speed, a second‐order nonlinear lateral dynamics model is adopted for controller design. Via the feedback linearization scheme and the first‐order Taylor series expansion, a time‐invariant feedback linearization control is proposed as a fixed‐gain linear version of the previously proposed nonlinear one. Furthermore, the conventional linear quadratic regulator (LQR) design is applied to facilitate the choice of the fixed‐gain matrix. Refined controls to compensate the model uncertainty and their local stability analysis are provided. Extension of the continuous‐time design results to discrete‐time cases is also addressed. Numerical simulations for an example model demonstrate the effectiveness of the proposed continuous‐time and discrete‐time design results. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
This paper presents a new methodology for the design and implementation of gain‐scheduled controllers for multi‐rate systems. The proposed methodology provides a natural way to address the integrated guidance and control problem for autonomous vehicles when the outputs are sampled at different instants of time. A controller structure is first proposed for the regulation of non‐square multi‐rate systems with more measured outputs than inputs. Based on this structure, an implementation for a gain‐scheduled controller is obtained that satisfies an important property known as the linearization property. The implementation resembles the velocity implementation for single‐rate systems. The method is then applied to the problem of steering an autonomous rotorcraft along a predefined trajectory defined in terms of space and time coordinates. By considering a convenient error vector to describe the vehicle's dynamics, the trajectory tracking problem is reduced to that of regulating the error variables to zero. Because of the periodic multi‐rate nature of the onboard sensor suite, the controller synthesis is dealt with under the scope of linear periodic systems theory. Simulation results obtained with a full non‐linear rotorcraft dynamic model are presented and discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a smooth switching gain‐scheduled control approach for linear parameter varying (LPV) system dynamics, indexed by a scalar varying parameter. The proposed approach is demonstrated by application to the planar vertical/short takeoff and landing (V/STOL) aircraft dynamics subject to input and output constraints. In the design of switching control, the switch logic determines the switching process between control laws. The usual switching logics use the instantaneous switching manner, which can cause discontinuous chattering control signal. By performing convex weightings between two individual control laws for neighboring subsystems, the proposed smooth switching gain‐scheduled control approach can provide improved performance but does not arouse control signal chattering. For the studied application, the nonlinear aircraft dynamics are represented in the form of LPV systems with parameter dependence on attitude angle. The resulting design is verified by the obtained relative stability and time response simulations. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
This paper concentrates on the leader‐follower formation control problem for marine surface vessels with unknown nonlinear dynamics and actuator faults. The unknown inertia matrix and multiplicative fault render the existing methods infeasible. To solve this problem, a low‐complexity prescribed performance controller is first proposed without the help of auxiliary neural/fuzzy systems or adaptive mechanisms. A modification technique is further adopted to relax the initial condition, such that global closed‐loop stability is guaranteed. Finally, simulation results illustrate the above theoretical results.  相似文献   

6.
This paper presents an approach to design robust non‐fragile HL2 ? L static output feedback controller, considering actuator time‐delay and the controller gain variations, and it is applied to design vehicle active suspension. According to suspension design requirements, the H and L2 ? L norms are used, respectively, to reflect ride comfort and time‐domain hard constraints. By employing a delay‐dependent Lyapunov function, existence conditions of delay‐dependent robust non‐fragile static output feedback H controller and L2 ? L controller are derived, respectively, in terms of the feasibility of bilinear matrix inequalities. Then, a new procedure based on LMI optimization and a hybrid algorithm of the particle swarm optimization and differential evolution is used to solve an optimization problem with bilinear matrix inequality constraints. Simulation results show that the designed active suspension system still can guarantee their own performance in spite of the existence of the model uncertainties, the actuator time‐delay and the controller gain variations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a new observer‐based controller design method for Lipschitz nonlinear systems with uncertain parameters and ‐bounded disturbance inputs. In the presence of uncertain parameters, the separation principle is not applicable even in the case of linear time invariant systems. A state of the art review for uncertain linear systems is first presented to describe the shortcomings and conservatism of existing results for this problem. Then a new LMI‐based design technique is developed to solve the problem for both linear and Lipschitz nonlinear systems. The features of the new technique are the use of a new matrix decomposition, the allowance of additional degrees of freedom in design of the observer and controller feedback gains, the elimination of any need to use equality constraints, the allowance of uncertainty in the input matrix and the encompassing of all previous results under one framework. An extensive portfolio of numerical case studies is presented to illustrate the superiority of the developed design technique to existing results for linear systems from literature and to illustrate application to Lipschitz nonlinear systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
An adaptive sliding mode observer (SMO)–based fault‐tolerant control method taking into consideration of actuator saturation is proposed for a hypersonic scramjet vehicle (HSV) under a class of time‐varying actuator faults. The SMO is designed to robustly estimate the HSV states and reconstruct the fault signals. The adaptive technique is integrated into the SMO to approximate the unknown bounds of system uncertainties, actuator faults, and estimation errors. The robust SMO synthesis condition, which can be formulated as a set of linear matrix inequalities, is improved by relaxing structure constraints to the Lyapunov matrix. An anti‐windup feedback control law, which utilizes the estimated HSV states and the fault signals, is designed to counteract the negative effects of actuator saturation induced by actuator faults. Simulation results demonstrate that the proposed approach can guarantee stability and maintain performance of the closed‐loop system in the presence of HSV actuator faults and saturation.  相似文献   

9.
Based on the most recent Tensor Product model transformation solutions, the paper presents an improved control performance for the most recent version of the three Degree of Freedom aeroelastic wing section model including Stribeck friction, according to signals pitch, plunge, trailing edge and control value, based on practical engineering criteria such as overshoot, undershoot, signal end values and settling time. This is achieved through proposing a novel two dimensional parametric convex hull manipulation based method for Tensor Product model transformation based Control Design Frameworks. The approach provides two TP model representations for the different requirements of the controller and observer of a given model, opening the possibility to utilize the TP model transformation's convex hull manipulation potential in control performance optimization for a separate optimization of the two TP model representations. Numerical simulation results are provided to illustrate the control performance improvements of the aeroelastic wing section model through the proposed 2D parametric convex hull manipulation based design method.  相似文献   

10.
The problem of secure control in cyber‐physical systems is considered in this work. A new modeling framework is first introduced, ie, cyber‐physical systems with attacks/faults changing system dynamics is modeled as a switched system, where the switching among subsystems is triggered by a rule generated by attackers but unknown for defenders. Based on an average dwell‐time approach incorporated by the attack frequency and duration properties, a convergence condition of the Lyapunov function on active intervals of subsystems (ie, the attack and healthy modes), under the developed switched controller, is given. Next, the unknown rule, however, leads to the asynchronous switching problem between the candidate controllers and system modes. As a result, degradation of the system performance (eg, a large chatter occurred in the system state trajectories) in the asynchronous intervals is caused. To address the difficulty, a novel switching law based on a prescribed performance is proposed, and it is shown that the asynchronous intervals are shortened by reducing adjustable parameters in the switching law. An illustrative example verifies the effectiveness of the proposed method.  相似文献   

11.
The main objective of the paper is to study the approximation and complexity trade‐off capabilities of the recently proposed tensor product distributed compensation (TPDC) based control design framework. The TPDC is the combination of the TP model transformation and the parallel distributed compensation (PDC) framework. The Tensor Product (TP) model transformation includes an Higher Order Singular Value Decomposition (HOSVD)‐based technique to solve the approximation and complexity trade‐off. In this paper we generate TP models with different complexity and approximation properties, and then we derive controllers for them. We analyze how the trade‐off effects the model behavior and control performance. All these properties are studied via the state feedback controller design of the Translational Oscillations with an Eccentric Rotational Proof Mass Actuator (TORA) System. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

12.
We characterize all solutions to a robustness optimization problem as the solutions of a two-parameter interpolation problem. From this characterization it is easy to show that an all-pass form solution always exists as long as a solution exists. We also study the possibility of using non-all-pass form solutions and by introducing other optimization objectives (motivated by improvements in disturbance rejection and robust stability) we search for the 'best' solution.  相似文献   

13.
Manufacturing industries often rely on quality control staff to ensure mistakes are detected before products are shipped to customers. Undetected errors can result in large financial and environmental costs to packaging companies and supermarkets but the contributors to such error are underexplored. The research reported in this paper investigated human error in the quality control checking of information displayed on the labels which accompany packaged fresh produce. Initial work sought to understand the demands of label‐checking in the packhouse environment, through interviews with key quality control staff, in situ observations, and the study of historical error data held by a fresh produce packaging company. This study highlighted the dynamic and cognitively challenging environment in which label‐checking occurred, while the historical error data indicated both the scale of the packhouse's work and the infrequency of error occurring. In a separate strand of laboratory‐based research, experienced and novice label‐checkers were presented with a simulated label‐checking task and a battery of computerized and pen‐and‐paper tests. These tasks were administered to determine whether cognitive abilities could predict label‐checking accuracy in a controlled laboratory environment. Stronger abilities in two cognitive processes (information processing speed and inhibition) predicted greater overall accuracy and higher detection of labeling errors. In identifying potential contributors to human error in the quality control checking of product labels both in situ and in the laboratory, the results are relevant to manufacturing, wherever information is printed on labels, especially when labeling processes depend upon human data entry and human quality control checking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号