首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Multifunctional hybrid nanoparticles, Fe3O4@poly[(2‐dimethylamino)ethyl methacrylate]‐block‐poly(2‐hydroxyethyl methacrylate)‐graft‐carbazole, with pH‐responsivity, superparamagnetism and fluorescence for targeted drug delivery and release have been synthesized. The nanoparticles have a core‐shell structure as determined from transmission electron microscopy, pH‐responsivity as determined from hydrodynamic radius analysis, superparamagnetism as determined from vibrating sample magnetometry and fluorescence as determined from fluorescence spectroscopy and fluorescence microscopy. The release behavior of model drug progesterone indicates that the release rate can be effectively controlled by altering the pH of the environment. The multifunctional nanoparticles could be applied extensively in targeted drug delivery and release, and with fluorescence they can serve as efficient tracers to record magnetic targeting routes. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
Nanoscale metal–organic frameworks (nMOFs) have attracted much attention as emerging porous materials as drug delivery carriers. Appropriate surface modification of them can greatly improve stability and introduce biocompatibility and cancer targeting functionality into drug delivery systems. Herein, we prepared nano-sized MIL-101(Fe)-N3 and loaded anticancer drug doxorubicin (DOX) into it. The synthetic polymer layer Alkyne-PLA-PEG was then attached to the F3 peptide (labeled as Alkyne-PLA-PEG-F3), and the surface of DOX/MIL-101(Fe)-N3 was covalently modified with it to obtain DOX/MIL-101-PLA-PEG-F3. Nano-sized MIL-101(Fe)-N3 has high drug loading capacity and the modification of MIL-101(Fe)-N3 by polymer Alkyne-PLA-PEG not only improved the dispersion, but also avoided the sudden release of the drugs and increased the biocompatibility of nanocarriers. The F3 peptide introduced into the nanocarriers also enabled it to specifically target tumor tissues and achieved active targeted drug delivery. As a nucleolin-mediated endocytosis drug delivery system, DOX/MIL-101-PLA-PEG-F3 can not only deliver anticancer drugs to tumors accurately, but also participate in Fenton-like reaction to generate hydroxyl radicals (•OH) for chemodynamic therapy (CDT), thus enabling combination therapy. It holds great promise as drug candidates to reduce systemic toxicity and improve the efficacy of cancer treatment.  相似文献   

3.
Monitoring of drug delivery is an essential technique for innovative medical treatments, including cancer therapy. Fluorescence imaging has become an important tool in tracking drug delivery and thus improving treatment efficacy. Binding fluorescent reporters to therapeutic agents paves the way to real time monitoring of drug delivery and drug distribution in vitro and in vivo. This review discusses fluorescent reporters used in drug delivery monitoring and provides an overview of recent achievements in the development of fluorescence based drug delivery systems.  相似文献   

4.
Gelatin (Gel)-based pH- and thermal-responsive magnetic hydrogels (MH-1 and MH-2) were designed and developed as novel drug delivery systems (DDSs) for cancer chemo/hyperthermia therapy. For this goal, Gel was functionalized with methacrylic anhydride (GelMA), and then copolymerized with (2-dimethylaminoethyl) methacrylate (DMAEMA) monomer in the presence of methacrylate-end capped magnetic nanoparticles (MNPs) as well as triethylene glycol dimethacrylate (TEGDMA; as crosslinker). Afterward, a thiol-end capped poly(N-isopropylacrylamide) (PNIPAAm-SH) was synthesized through an atom transfer radical polymerization technique, and then attached onto the hydrogel through “thiol-ene” click grafting. The preliminary performances of developed MHs for chemo/hyperthermia therapy of human breast cancer was investigated through the loading of doxorubicin hydrochloride (Dox) as an anticancer agent followed by cytotoxicity measurement of drug-loaded DDSs using MTT assay by both chemo- and chemo/hyperthermia-therapies. Owing to porous morphologies of the fabricated magnetic hydrogels according to scanning electron microscopy images and strong physicochemical interactions (e.g., hydrogen bonding) the drug loading capacities of the MH-1 and MH-2 were obtained as 72 ± 1.4 and 77 ± 1.8, respectively. The DDSs exhibited acceptable pH- and thermal-triggered drug release behaviors. The MTT assay results revealed that the combination of hyperthermia therapy and chemotherapy has synergic effect on the anticancer activities of the developed DDSs.  相似文献   

5.
Targeted drug delivery (TDD) is an efficient strategy for cancer treatment. However, the real-time monitoring of drug delivery is still challenging because of a pronounced lack of TDD systems capable of providing a near-infrared (NIR) fluorescence signal for the detection of drug-release events. Herein, a new TDD system, comprising a turn-on NIR fluorescent reporter attached to an anticancer drug and targeting peptide, is reported. This system provides both TDD and NIR fluorescence monitoring of drug-release events in target tissue. In this TDD system, a new carboxy-derivatized xanthene–cyanine (XCy) dye is attached to an anticancer drug, chlorambucil (CLB), through a hydrolytically cleavable ester linker and coupled to a targeting peptide, octreotide amide (OCTA), which is specific to somatostatin receptors SSTR-2 and STTR-5 overexpressed on many tumor cells. This OCTA-G-XCy-CLB (G: γ-aminobutyric acid) conjugate exhibits no detectable fluorescence, whereas, upon the hydrolytic cleavage of the ester linker, a bright NIR fluorescence appears at λ≈710 nm; this signals release of the drug. Real-time TDD monitoring is demonstrated for the example of the human pancreatic cancer cell line overexpressing SSTR-2 and STTR-5, in comparison with the noncancerous Chinese hamster ovary cell line, which contains a reduced number of these receptors.  相似文献   

6.
For decades, researchers have aspired to develop materials for noninvasive treatment and monitoring of pathological conditions. Various organs, tissues, subcellular compartments, and their pathophysiological states can be characterized by their pH values. pH‐dependent intracellular tumor targeting has received particular attention due to the unique acidic environment of the solid tumors created by physiological and metabolical abnormalities. Responsive nanocarriers, when exposed to these pH stimuli, respond quickly to the physicochemical changes by undergoing structural deformations, such as swelling and phase transition, which favors the drug release specifically at the diseased site. Recently, researchers have developed several new poly(L ‐histidine) (p(His))‐based pH responsive systems for sustained drug release and molecular targeting. This review focuses on the p(His)‐based pH responsive nanocarriers, which are utilized in biomedical applications such as anti‐cancer drug delivery and nucleic acid delivery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40796.  相似文献   

7.
Reduction‐responsive drug delivery systems have recently gained intense attention in intracellular delivery of anticancer drugs. In this study, we developed a PEGylated polypeptide, poly(ethylene glycol)‐block‐poly(?‐propargyloxycarbonyl‐l ‐lysine) (PEG113b‐PPAL), as a novel clickable substrate for conjugation of reduction‐responsive side chains for antineoplastic drug delivery. PEG113b‐PPAL was synthesized through ring‐opening polymerization of alkyne‐containing N‐carboxyanhydride monomers. A designed disulfide‐containing side chain was introduced onto the PEGylated polypeptide by click reaction. The obtained copolymer PEG113b‐P(Lys‐DSA) formed micelles by self‐assembly, which exhibited reduction‐responsive behavior under the stimulus of 10 mmol L–1 glutathione (GSH) in water. A small molecule intermediate, compound 2 , was used as a model to investigate the thiol reduction mechanism of PEG113b‐P(Lys‐DSA) copolymers. The anticancer drug doxorubicin (DOX) was then loaded into the micelles with a drug loading content of 6.73 wt% and a loading efficiency of 40.3%. Both the blank and the drug‐loaded micelles (DOX‐loaded polylysine derived polymeric micelles (LMs/DOX)) adopted a spherical morphology, with average diameters of 48.0 ± 13.1 and 63.8 ± 20.0 nm, respectively. The in vitro drug release results indicated that DOX could be released faster from the micelles by the trigger of GSH in phosphate buffered saline. Confocal laser scanning microscopy and flow cytometer analysis further proved the intracellular delivery of DOX by LMs/DOX and their GSH‐sensitive release behavior. A 3‐(4,5‐dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay showed that the polymers exhibited negligible cytotoxicity towards normal L929 cells or cancer MCF‐7 cells with a treated concentration up to 1.0 mg mL–1. In conclusion, our synthesized biocompatible and biodegradable PEGylated polypeptides hold great promise for intracellular antineoplastic drug delivery. © 2019 Society of Chemical Industry  相似文献   

8.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

9.
Spherical gold nanoparticles (GNPs), whose unique properties regarding biomedical applications were broadly investigated, are an object of interest as nanocarriers in drug targeted delivery systems (DTDSs). The possibility of surface functionalization, especially in enabling longer half-life in the bloodstream and enhancing cellular uptake, provides an opportunity to overcome the limitations of popular anticancer drugs (such as cisplatin) that cause severe side effects due to their nonselective transportation. Herein, we present investigations of gold nanoparticle–cisplatin systems formation (regarding reaction kinetics and equilibrium) in which it was proved that the formation efficiency and stability strongly depend on the nanoparticle surface functionalization. In this study, the capillary electrophoresis hyphenated with inductively coupled plasma tandem mass spectrometry (CE-ICP-MS/MS) was used for the first time to monitor gold–drug nanoconjugates formation. The research included optimizing CE separation conditions and determining reaction kinetics using the CE-ICP-MS/MS developed method. To characterize nanocarriers and portray changes in their physicochemical properties induced by the surface’s processes, additional hydrodynamic size and ζ-potential by dynamic light scattering (DLS) measurements were carried out. The examinations of three types of functionalized GNPs (GNP-PEG-COOH, GNP-PEG-OCH3, and GNP-PEG-biotin) distinguished the essential differences in drug binding efficiency and nanoconjugate stability.  相似文献   

10.
In the present study, polylactic acid (PLA)/polyethylene glycol (PEG)/multiwalled carbon nanotube (MWCNT) electrospun nanofibrous scaffolds were prepared via electrospinning process and their applications for the anticancer drug delivery system were investigated. A response surface methodology based on Box–Behnken design (BBD) was used to evaluate the effect of key parameters of electrospinning process including solution concentration, feeding rate, tip–collector distance (TCD) and applied voltage on the morphology of PLA/PEG/MWCNT nanofibrous scaffolds. In optimum conditions (concentration of 8.15%, feeding rate of 0.2 mL/h, voltage of 18.50 kV and TCD of 13.0 cm), the minimum experimental fiber diameter was found to be 225 nm which was in good agreement with the predicted value by the BBD analysis (228 nm). In vitro drug release study of doxorubicin (DOX)‐loaded nanofibrous scaffolds, higher drug content induced an extended release of drug. Also, drug release rate was not dependent on drug/polymer ratio in different electrospun nanofibrous formulations. The equation of Mt = c0 + kt0.5was used to describe the kinetic data of DOX release from electrospun nanofibers. The cell viability of DOX‐loaded nanofibrous scaffolds was evaluated using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide, a tetrazole assay on lung cancer A549 cell lines. We propose that DOX‐incorporated PLA/PEG/MWCNT nanofibrous scaffold could be used as a superior candidate for antitumor drug delivery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41286.  相似文献   

11.
A nanosilver (nano‐Ag)/poly(vinyl alcohol) (PVA) hydrogel device was synthesized with γ irradiation because it is a highly suitable tool for enhanced nano‐Ag technologies and biocompatible controlled release formulations. The amount of the Ag+ ions released in vitro by the nano‐Ag/PVA hydrogel device was in the antimicrobial parts per million concentration range. The modeling of the Ag+ ion release kinetics with the elements of the drug‐delivery paradigm revealed the best fit solution (R2 > 0.99) for the Kopcha and Makoid–Banakar's pharmacokinetic dissolution models. The term A/B, derived from the Kopcha model, indicated that the nano‐Ag/PVA hydrogel was mainly an Ag+‐ion diffusion‐controlled device. Makoid–Banakar's parameter and the short time approximated Ag+‐ion diffusion constant reflected the importance of the size of the Ag nanoparticles. However, it appeared that the cell oxidation potential of the Ag nanoparticles depended on the diffusion characteristics of the fluid penetrating into the Ag/PVA nanosystem. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40321.  相似文献   

12.
A nano drug carrier based on sustainable and biocompatible nanocellulose was developed for use in prolonged drug releases. The grafting of β‐cyclodextrin (βCD) on bacterial cellulose nanowhiskers (BCNC) using citric acid (CA) as a green linker was performed. This led to the formation of functionalized BCNC‐grafted‐βCD (BCNC‐g‐βCD). Broad‐spectrum antibiotic Ciprofloxacin (CIP) and anticancer drugs Doxorubicin (DOX) and Paclitaxel (PTX) were used as model drugs. These model drugs were conjugated to BCNC‐g‐βCD to form the drug‐nanocarrier systems (BCNC‐g‐βCD‐drug). The change in the nanowhiskers’ surface chemistry, morphology, and crystallinity was characterized by FTIR, solid‐state 13C NMR, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x‐ray diffraction (XRD). The functionalized nanowhiskers showed a significant increase in the drug payloads, which ranged from 495 ±4–810 ±7 μg/mg, along with a radical improvement in the drug release profiles. For all of the developed drug‐conjugated nanocarriers, the initial burst releases were reduced effectively. The observed drug releases showed a sustained and controlled manner, with cumulative releases of 75–90 % over 5–5.5 days. Nevertheless, an improved drug release performance was observed in the acidic pH of 6.4 that mimicked extracellular tumor cells. In vitro drug release data were fitted zero‐order kinetic model with drug release constants (K0) of 0.68, 0.74, and 0.79 μg drug/h (at pH 6.4 and 37 °C) for BCNC‐g‐βCD‐CIP, BCNC‐g‐βCD‐DOX, and BCNC‐g‐βCD‐PTX nanosystems, respectively. The observed higher payloads along with the slow releases of drugs from the developed nanocarrier suggests its promising potential for reducing the frequent daily dosing and minimizing systemic toxicity of loaded drugs.  相似文献   

13.
(1) Background: The size and surface charge are the most significant parameters of nanocarriers that determine their efficiency and potential application. The poor cell uptake of encapsulated drugs is the main limitation in anticancer treatment. The well-defined properties of nanocarriers will enable to target specific tissue and deliver an active cargo. (2) Methods: In the current study, poly(D,L -lactide) (PLA) nanocarriers loaded with curcumin (CUR) and differing surface charge were evaluated for transport efficacy in combination with electroporation (EP) in dependence on the type of cells. The obtained CUR-loaded nanoparticles with diameters ranging from 195 to 334 nm (derived from dynamic light scattering (DLS)) were characterized by atomic force microscopy (AFM) (morphology and shape) and Doppler electrophoresis (ζ-potential) as well as UV-vis spectroscopy (CUR encapsulation efficiency (about 90%) and photobleaching rate). The drug delivery properties of the obtained PLA nanocarriers enhanced by electroporation were assessed in human colon cancer cells (LoVo), excitable normal rat muscle cells (L6), and free of voltage-gated ion channels cells (CHO-K1). CLSM studies, viability, and ROS release were performed to determine the biological effects of nanocarriers. (3) Results: The highest photodynamic activity indicated anionic nanocarriers (1a) stabilized by C12(COONa)2 surfactant. Nanocarriers were cytotoxic for LoVo cells and less cytotoxic for normal cells. ROS release increased in cancer cells with the increasing electric field intensity, irradiation, and time after EP. Muscle L6 cells were less sensitive to electric pulses. (4) Conclusions: EP stimulation for CUR-PLA nanocarriers transport was considered to improve the regulated and more effective delivery of nanosystems differing in surface charge.  相似文献   

14.
Stimuli‐sensitive drug delivery systems (DDSs) have attracted considerable attention in medical and pharmaceutical fields; thermo‐sensitive DDS dealing with poly(N‐isopropylacrylamide) (PNIPAM) have been widely studied. Hydrogels composed of temperature‐sensitive NIPAM and biocompatible and pH‐sensitive maleic acid (MAc) were synthesized by sedimentation polymerization. Experiments on drug release from the crosslinked NIPAM‐co‐MAc hydrogel loaded with ibuprofen into different pH buffer solutions were successfully carried out at temperature swing between 25 and 40°C. The in vitro release studies have showed that the release rate depended on acidity or basicity (polarity) of the medium and the gel and swelling ratio of the gel network as a function of the environmental pH and temperature. The SEM image of the dry bead gave more insight into the surface architecture and the thermal studies shine light on the decomposition pattern and glass transition temperature of the gel. The mechanism of the drug release was discussed in relation to the diffusion rate and the abrupt change in the pH of the medium. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Smart nanocarrier for simultaneous drug delivery and cellular imaging is ideal for both cancer therapy and diagnosis. In this work, polymeric micelles based on the tetraphenylethene (TPE) conjugated poly(N6‐carbobenzyloxy‐l ‐lysine)‐block‐poly(2‐methacryloyloxyethyl phosphorylcholine) (TPE‐PLys‐b‐PMPC) copolymer are successfully prepared. Such biomimetic and biodegradable TPE‐PLys‐b‐PMPC micelles exhibit remarkable aggregation‐induced emission (AIE) feature and great biocompatibility, showing great potential for bioimaging application. In addition, anticancer drug doxorubicin (DOX) can be incorporated into the core of micelles and the intracellular release of DOX can be furthermore traced through the fluorescent imaging of these AIE micelles. As expected, this DOX‐loading polymeric micelle shows significant growth inhibition against HeLa cells and 4T1 cells and such TPE‐PLys‐b‐PMPC micelles would be a promising drug carrier for potential cancer therapy and bioimaging. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45651.  相似文献   

16.
Multiscale polymeric composites combining a biodegradable matrix with low cost and biocompatible hybrid nanocarriers promise to supply a new generation of multipurpose devices for drug delivery. The aim of this work was to investigate the release mechanisms of sodium benzoate (NaBz ) from halloysite nanotubes (HNTs ) embedded in a biodegradable polymer matrix (poly(?‐caprolactone)). To that purpose, different amounts of NaBz molecules were successfully incorporated into HNTs using a simple environmentally friendly procedure. The resulting HNT‐NaBz nano‐hybrids were then incorporated into a poly(?‐caprolactone) matrix by high energy ball milling at ambient temperature and in dry conditions. Analysis of the resulting composites showed important effects of the HNT‐NaBz nano‐hybrids on the thermal and mechanical properties. Controlled drug release, followed by UV spectrophotometry, was also found to be dependent on the HNT‐NaBz relative fractions. Experimental data were thus analyzed using a modified Gallagher ? Corrigan model and correlated with the nano‐hybrid morphologies. © 2016 Society of Chemical Industry  相似文献   

17.
Negatively charged fluorescent carbon dots (CDs, Em=608 nm) were hydrothermally prepared from thiophene phenylpropionic acid polymers and then successfully loaded with the positively charged anticancer cargo coptisine, which suffers from poor bioavailability. The formed CD-coptisine complexes were thoroughly characterized by particle size, morphology, drug loading efficiency, drug release, cellular uptake and cellular toxicity in vitro and antitumor activities in vivo. In this nano-carrier system, red emissive CDs possess multiple advantages as follows: 1) high drug loading efficiency (>96 %); 2) sustained drug release; 3) enhanced drug efficacy towards cancer cells; 4) EPR effect; 5) drug release tracing with near-infrared imaging. These properties indicated that red emissive CDs prepared from polymers could be used as a novel drug delivery system with integrated therapeutic and imaging functions in cancer therapy, which are expected to have great potential in future clinical applications.  相似文献   

18.
Development of biocompatible multifunctional nanocarriers is necessary for the success of theranostics. Here, we report a novel hybrid nanorod with self‐fluorescent property, high drug loading capacity, and good biocompatibility. Fluorescent hydroxyapatite (fHA) nanorod was ensheathed with mesoporous silica (mSi). The mSi shell was uniformly layered and was tunable in thickness (10–30 nm) over the fHA nanorod. Highly mesoporous structure of mSi shell facilitated the loading of a large quantity of biological molecules, as confirmed with fluorescein isothiocynate; ~1% loading for fHA increased to ~10% loading for fHA@mSi. The self‐fluorescent property of the fHA resulting from CO2.? radicals was well preserved in the fHA@mSi hybrid, as analyzed by photoluminescence and electron paramagnetic resonance property. Cellular toxicity of the fHA@mSi hybrid nanorod showed favorable cell viability (>90% viability of control) up to a concentration of ~40 μg/mL. Intracellular uptake rate of the hybrid nanorod was as high as 80–90%, as analyzed by fluorescent‐assisted cell sorter. Results demonstrate the newly developed fHA@mSi nanocarriers have great potential for the effective loading of therapeutic molecules and delivery within intracellular compartments in concert with a capacity for in situ imaging.  相似文献   

19.
纳米药物作为一种新兴技术,为肿瘤的精确定位和早期诊断、靶向、长效和联合治疗提供了重要的研发平台,为克服传统药物非特异性靶向和非选择性损伤机体组织的瓶颈问题提供了可能。近年来研究者基于量子点、纳米金、纳米介孔硅等无机纳米药物载体设计合成了大量可用于肿瘤诊疗的纳米药物,主要通过“核-壳”结构设计、表面修饰等方法提高纳米药物性能。综述了无机纳米材料作为纳米药物载体在肿瘤诊疗中的应用,详细介绍了纳米药物的设计策略和肿瘤诊疗作用机制,并对未来进行无机纳米药物在肿瘤诊疗中的临床应用进行了展望。  相似文献   

20.
Hydrogels, composed of poly(acrylamide‐co‐maleic acid) were synthesized and the release of vitamin B2 from these gels was studied as a function of the pH of the external media, the initial amount of the drug loaded, and the crosslinking ratio in the polymer matrix. The gels containing 3.8 mg of the drug per gram gel exhibit almost zero‐order release behavior in the external media of pH 7.4 over the time interval of more than their half‐life period (t1/2). The amount of the drug loaded into the hydrogel also affected the dynamic release of the encapsulated drug. As expected, the gels showed a complete swelling‐dependent mechanism, which was further supported by the similar morphology of the swelling and release profiles of the drug‐loaded sample. The hydrophilic nature of the drug riboflavin does not contribute toward the zero‐order release dynamics of the hydrogel system. On the other hand, the swelling osmotic pressure developed between the gels and the external phase, due to loading of the drug by equilibration of the gels in the alkaline drug solution, plays an effective role in governing the swelling and release profiles. Finally, the minimum release of the drug in the swelling media of pH 2.0 and the maximum release with zero‐order kinetics in the medium of pH 7.4 suggest that the proposed drug‐delivery devices have a significant potential to be used as an oral drug‐delivery system for colon‐specific delivery along the gastrointestinal (GI) tract. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1133–1145, 2002; DOI 10.1002/app.10402  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号