共查询到20条相似文献,搜索用时 15 毫秒
1.
Alexander W. Dowling Sree R. R. Vetukuri Lorenz T. Biegler 《American Institute of Chemical Engineers》2012,58(12):3777-3791
Pressure swing adsorption (PSA) is an efficient method for gas separation and is a potential candidate for carbon dioxide (CO2) capture from power plants. However, few PSA cycles have been designed for this purpose; the optimal design and operation of PSA cycles for CO2 capture, as well as other systems, remains a very challenging task. In this study, we present a systematic optimization‐based formulation for the synthesis and design of novel PSA cycles for CO2 capture in IGCC power plants, which can simultaneously produce hydrogen (H2) and CO2 at high purity and high recovery. Here, we apply a superstructure‐based approach to simultaneously determine optimal cycle configurations and design parameters for PSA units. This approach combines automatic differentiation, efficient ODE solvers for the state and sensitivity equations of the PSA model, and state of the art nonlinear programming solvers. Three optimization models are proposed, and two PSA case studies are considered. The first case study considers a binary separation of H2 and CO2 at high purity, where specific energy is minimized, whereas the second case study considers a larger five component separation. © 2012 American Institute of Chemical Engineers AIChE J, 58: 3777–3791, 2012 相似文献
2.
A systematic algorithm for simulated moving bed (SMB) chromatography process development that utilizes dynamic optimization, transient experimental data, and parameter estimation to arrive at optimal operating conditions is described. These operating conditions ensure both high purity constraints and optimal productivity are satisfied. This algorithm proceeds until the SMB process is optimized without manual tuning. In a case study, it has been shown with a linear isotherm system that the optimal operating conditions can be reached in only two changes of operating conditions following the proposed algorithm. Another case study with a linear isotherm system has shown that the algorithm is robust to optimize the SMB even if there is significant model mismatch at first. © 2012 American Institute of Chemical Engineers AIChE J, 59: 736–746, 2013 相似文献
3.
Zhaoyang Niu Zhongli Tang Wenbin Li Yuanhui Shen Donghui Zhang 《American Institute of Chemical Engineers》2022,68(7):e17729
In order to address the challenge of optimization of pressure swing adsorption systems, an optimization framework based on pseudo transient continuation method was used and a corresponding library with several models was established for simulation of more complex processes. Then, two vacuum pressure swing adsorption processes for oxygen and nitrogen production were considered as case studies and the results based on the single discretization and pseudo transient method were compared and analyzed in detail. Besides, a new strategy was proposed for the stability and efficiency of simulation. Finally, reduced successive quadratic programming and time relaxation algorithm were used for the optimization of the two systems, respectively, and the results showed that the time relaxation algorithm based on the pseudo transient framework has a strong advantage in saving optimization time cost compared with the former. 相似文献
4.
Integrated adsorbent‐process optimization for carbon capture and concentration using vacuum swing adsorption cycles 下载免费PDF全文
A novel approach for integrated adsorbent and process design is proposed. The traditional pressure or vacuum swing adsorption (PSA) / vacuum swing adsorption (VSA) process optimization for chosen objectives, where operating conditions are the decision variables, and CO2 purity and recovery are constraints, is expanded to include adsorbent isotherm characteristics as additional decision variables. Two VSA cycles, namely a four‐step process1, currently known to have the lowest energy consumption for CO2 capture and concentration (CCC), and a six‐step process2, recently proven to have a wider operating window for the evacuation pressure, have been investigated in the current study. The integrated optimization results simultaneously provide the lower bound of minimum energy and upper bound of maximum productivity for CCC achievable from the two VSA processes along with the operating conditions and the corresponding isotherm shapes necessary to achieve them. It may be viewed as an enabler for adsorbent design or expedient adsorbent search by process inversion. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2987–2995, 2017 相似文献
5.
Model reduction for linear simulated moving bed chromatography systems using Krylov‐subspace methods 下载免费PDF全文
Suzhou Li Yao Yue Lihong Feng Peter Benner Andreas Seidel‐Morgenstern 《American Institute of Chemical Engineers》2014,60(11):3773-3783
Simulated moving bed (SMB) chromatography is a well‐established technology for separating chemical compounds. To describe an SMB process, a finite‐dimensional multistage model arising from the discretization of partial differential equations is typically employed. However, its relatively high dimension poses severe computational challenges to various model‐based analysis. To overcome this challenge, two Krylov‐type model order reduction (MOR) methods are proposed to accelerate the computation of the cyclic steady states (CSSs) of SMB processes with linear isotherms. A “straightforward method” that carefully deals with the switching behavior in MOR is first proposed. Its improvement, a “subspace‐exploiting method,” thoroughly exploits each reduced model to achieve further acceleration. Simulation studies show that both methods achieve high accuracy and significant speedups. The subspace‐exploiting method turns out to be computationally much more efficient. Two challenging analyses of SMB processes, namely uncertainty quantification and CSS optimization, further demonstrate the accuracy, efficiency, and applicability of the proposed methods. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3773–3783, 2014 相似文献
6.
Tight integration through material and energy recycling is essential to the energy efficiency and economic viability of process and energy systems. Equation‐oriented (EO) steady‐state process simulation and optimization are key enablers in the optimal design of integrated processes. A new process modeling and simulation concept based on pseudo‐transient continuation is introduced. An algorithm for reformulating the steady‐state models of process unit operations as differential‐algebraic equation systems that are statically equivalent with the original model is presented. These pseudo‐transient models improve the convergence of EO process flowsheet simulations by expanding the convergence basin. This concept is used to build a library of pseudo‐transient models for common process unit operations, and this modeling concept seamlessly integrates with a previously developed time‐relaxation optimization algorithm. Two design case studies are presented to validate the proposed framework. © 2014 American Institute of Chemical Engineers AIChE J 60: 4104–4123, 2014 相似文献
7.
Zhimian Hao Chonghuan Zhang Alexei A. Lapkin 《American Institute of Chemical Engineers》2022,68(6):e17616
We propose a sequential sampling approach to training statistical digital twins. This approach is relevant for real-world engineering problems with expensive data generation. Prerequisite for building surrogates is sufficient data; however, oversampling does not improve regression accuracy. The time for data generation may be reduced by: (a) applying a classifier to improve data quality and avoid evaluation of infeasible inputs, and (b) employing dynamic sampling linked to regression quality. In dynamic sampling, the initial sampling rate is large to generate enough data for surrogate regression in a few iterations; the sampling rate gradually slows down with the improvement of the iteratively refined surrogate. A dynamic process and a steady-state process from the field of carbon capture and utilization are used as case studies: pressure swing adsorption (PSA) and gas-to-liquids (GTL). The computational costs for surrogates generation are reduced by 86% for PSA and 51% for GTL, compared with employing a static sampling rate. 相似文献
8.
采用分别装载活性炭和NA型吸附剂的复合床层的变压吸附工艺来脱除合成气中微量的CO和CO2,并利用Aspen-Adsim软件对其进行模拟和优化。模拟结果表明,吹扫气量对工艺性能有较大的影响,吹扫气由处在顺放步骤的吸附塔提供,因此在顺放步骤将床层压力降至较低压力,可获得较大的吹扫气量,此时的工艺性能也较优。模拟结果还表明,均压次数对工艺性能也有影响。在相同的顺放压降下,将变压吸附过程中的3次均压变为2次均压,可减少吸附剂用量,吸附剂产率更高,但塔底尾气量要相应增加。 相似文献
9.
Although the super cold separator applied to the system for CO2 recovery from flue gas can produce pure CO2 liquid, the CO2 recovery efficiency is low. Therefore, the addition of a PSA plant was considered for the secondary CO2 recovery from the noncon‐densing gas to improve the efficiency. The PSA plant was operated for adsorption at the same pressure as that of the super cold separator and for desorption at the atmospheric pressure. From both the simulation and the experimental data, it was confirmed that CO2 could be concentrated from 50% in the noncondensing gas to 70% in the recovery gas by the PSA plant and the CO2 recovery efficiency of the plant was about 90%. 相似文献
10.
New development in flow‐through pressure‐swing frequency response method for mass‐transfer study: Ethane in ZIF‐8 下载免费PDF全文
Yu Wang Charanjit S. Paur Peter I. Ravikovitch 《American Institute of Chemical Engineers》2017,63(3):1077-1090
A new pressure‐swing frequency response (PSFR) method has been developed to study mass transfer in adsorption systems as a function of temperature and pressure, from ?70 to 180°C, and up to 7 bar. New in‐phase and out‐of‐phase functions have been derived for the PSFR in a general way to allow information extracted from it independent of whether the system is operated in a batch volume swing or a flow‐through pressure swing mode. A new mathematical model that considers distribution of diffusion rates has been introduced to account for diffusive transport in heterogeneous samples. Numerical simulation results have shown that a single rate diffusion model works well when heterogeneity can be described by a normal distribution, but not for asymmetrically bimodal distributions. As a test reference system, the transport of ethane in ZIF‐8 was investigated at different pressures and temperatures using the new PSFR method. The mass transfer was found to be dominated by micropore diffusion. Diffusivity was found to be weakly dependent on pressure or loading, but quite strongly dependent on temperature. The results agree very well with our independent batch volume frequency response technique experiments. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1077–1090, 2017 相似文献
11.
Ray Wang Thomas F. Edgar Michael Baldea 《American Institute of Chemical Engineers》2017,63(7):2719-2730
Although cyclical operation systems are relatively widespread in practice (notably in the realm of physical separations, for example, pressure‐swing adsorption and chromatography), the development of specific fault detection mechanisms has received little attention compared to the extensive efforts dedicated to continuous or batch processes. Here, a novel geometric approach for process fault detection is proposed. Specifically, a time‐explicit multivariable representation of data collected from the process, which provides a natural framework for defining “normal” operation and the corresponding confidence regions is developed. On this basis, a two‐step fault detection approach is proposed, based on detecting intercycle variations to locate a faulty cycle, and intracycle changes to determine the exact timing of a fault. The theoretical developments are illustrated with two simulation case studies. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2719–2730, 2017 相似文献
12.
双回流变压吸附是一种在吸附塔中间位置进料,塔顶和塔底分别采用轻、重组分回流的变压吸附过程,能够同时生产两种高纯度、高回收率的产品气。以实验室自主合成的LiLSX分子筛为吸附剂,利用Aspen Adsorption模拟软件,对进料组成为78%N2/21%O2/1%Ar的实际空气进行了两塔双回流变压吸附的模拟研究。模拟结果表明:当原料气为78%N2/21%O2/1%Ar,吸附压力为2 bar(1 bar=105 Pa),解吸压力为0.3 bar,进料量为0.4 m3/h,轻组分回流流量为0.095 L/min,重组分回流流量为5.22 L/min时,能够得到体积分数为95.67%的O2和体积分数为98.25%的N2,回收率分别为94.60%和99.91%。并且进一步探究了进料位置、吸附时间、轻组分回流流量、重组分产品气流量等因素对O2和N2两种产品气纯度和回收率的影响。 相似文献
13.
14.
研究快速变压吸附制氧过程中的传质过程,结合实验数据对全局动态传质系数与常数传质系数进行对比模拟分析,并考察各传质阻力对传质效果的影响。结果表明:基于轴向、膜扩散和孔扩散估算的动态传质系数是有效的。膜阻力是主要阻力,其次是轴向扩散阻力,大孔扩散阻力较小,微孔扩散阻力可忽略。在快速变压吸附中,由于气速和温度变化较快,传质系数也会有较大变化,总体趋势是传质系数随着温度和气速的升高而升高。采用恒定传质系数无法准确描述吸附塔内各个时间点、空间点上的传质行为,根据各节点状态计算出的动态估算传质系数能够与吸附塔内的行为有较好的吻合度,模型具有较高的可信性。 相似文献
15.
本文采用UNIFAC模型计算乙醇-苯混合物的汽液平衡数据,应用SRK状态方程计算汽、液相的焓值,对乙醇-苯混合物变压精馏(PSD-Pressure Swing Distillation)流程进行了稳态模拟和优化,得到了各物料流的温度、压强、流量和组成以及精馏塔理论板上的温度分布、液相流量分布和组成分布以及冷凝器和再沸器的热负荷。 相似文献
16.
目前工业上主要通过变压吸附技术从蒸汽甲烷重整气中制取氢产品气。然而,能源需求量的快速增加使得传统变压吸附技术在产量方面的不足越发明显。为此,进行了快速变压吸附从蒸汽甲烷重整气中制取氢气的模拟研究。采用活性炭和5A分子筛作为吸附剂,并以测得的原料气中各组分在两种吸附剂上的吸附数据为基础,进行了六塔快速变压吸附工艺的数值模拟与分析。在分析了塔内温度、压力和固相的浓度分布后,探究了进料流量、双层吸附剂高度比以及冲洗进料比三个操作参数对于快速变压吸附工艺性能的影响,结果表明:原料气组成为H2/CH4/CO/CO2=76%/3.5%/0.5%/20%,吸附压力为22 bar(1 bar=105 Pa),解吸吹扫压力为1.0 bar,处理量为0.8875 mol·s-1,吸附剂床层高度比为0.5∶0.5,冲洗进料比为22.37%时,可获得H2纯度99.90%,回收率69.88%,此时H2产量为0.4713 mol·s-1。相比之下,氢气纯度为99.90%时,尽管PSA工艺回收率为83.40%,但处理量只有0.39 mol·s-1,因此H2产量仅为0.2472 mol·s-1。 相似文献
17.
Amparo Ramos F.Gabriel Acién José M. Fernández‐Sevilla Cynthia V. González Ruperto Bermejo 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2010,85(6):783-792
BACKGROUND: Phycobiliproteins are water soluble proteins useful as fluorescent markers of cells and macromolecules, and as natural colorants, and are anticarcinogenic. Although phycobiliproteins have many applications, their use is limited by the high cost of the purified macromolecules, mainly related with the cost of extraction and purification. In this study a fast and scalable method for preparative extraction and purification of C‐phycocyanin (C‐PC) from Anabaena marina is developed. RESULTS: The method developed consists in the extraction of phycobiliproteins using repeated single contact strategy, separation being performed by expanded bed adsorption (EBA) chromatography using Streamline‐DEAE. Optimal conditions for EBA were obtained at small scale, using a 15 mm internal diameter column, these being a sample load of 0.9 mg C‐PC mL?1 adsorbent, an expanded bed volume twice the settled bed volume and a sample viscosity of 1.109 mP. The process was then scaled up 36 times, the success of the scale‐up process being verified. Finally, to obtain pure C‐PC conventional ion‐exchange chromatography was utilized. CONCLUSION: Small diameter columns was shown to be useful to simulate the behavior of larger diameter columns for use in scaled up systems. Expanded bed adsorption was demonstrated to be a scalable technology allowing large quantities of C‐PC to be obtained, maintaining high protein recovery while reducing both processing cost and time. The proposed methodology allows recovery of more than 62% of the C‐PC contained in the biomass in the form of pure C‐PC concentrates. Copyright © 2010 Society of Chemical Industry 相似文献
18.
Modeling of circulating fluidized beds systems for post‐combustion CO2 capture via temperature swing adsorption 下载免费PDF全文
Stefano E. Zanco Marco Mazzotti Matteo Gazzani Matteo C. Romano Isabel Martínez 《American Institute of Chemical Engineers》2018,64(5):1744-1759
The technology of circulating fluidized beds (CFBs) is applied to temperature swing adsorption (TSA) processes for post‐combustion CO2 capture employing a commercial zeolite sorbent. Steady state operation is simulated through a one‐dimensional model, which combines binary adsorption with the CFB dynamics. Both single step and multi‐step arrangements are investigated. Extensive sensitivity analyses are performed varying the operating conditions, in order to assess the influence of the main operational parameters. The results reveal a neat superiority of multi‐step configurations over the standard one, in terms of both separation performance and efficiency. Compared to fixed‐bed TSA systems, CFB TSA features a high compactness degree. However, product purity levels are limited compared to the best performing fixed‐bed processes, and heat management within the system appears to be a major issue. As regards energy efficiency, CFB systems place themselves in between the most established absorption‐based technologies and the fixed‐bed TSA. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1744–1759, 2018 相似文献
19.
由于乙醇-甲苯体系为压力敏感体系,本文提出了热集成变压精馏分离乙醇-甲苯共沸体系的工艺方法,并通过实验数据验证了NRTL模型对模拟分离该体系的适用性。利用Aspen模拟软件,以NRTL方程为物性计算模拟,以乙醇和甲苯的纯度为约束变量,分离过程能耗最低为目标函数,采用优化分析,得到了模拟的优化参数,并通过模拟计算,制取了纯度不低于99.9%的甲苯和乙醇产品,收率达到99.9%以上。用高压塔的塔顶气相潜热作为常压塔再沸器热源的热集成变压精馏,与两塔均采用外界蒸汽供热的传统变压精馏方式相比,节能高达49%。 相似文献