首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization and catalytic properties of gold supported on ceria, gallia and a cerium–gallium mixed oxide were investigated. The nanostructural characterization of the cerium–gallium support (nominal atomic composition Ce80Ga20) showed that gallium(III) cations are homogenously distributed into the ceria matrix by substituting cerium(IV) cations of the fluorite-type structure of ceria. Au was added to the supports by the deposition–precipitation method using urea. High Au dispersions were achieved for all the fresh materials (D > 60%). The CO oxidation and the water gas shift (WGS) reaction were tested on the whole set of catalysts. All the supported-gold catalysts showed high activity for the CO oxidation reaction. However, those containing gallium in their formulation deactivated due to gold particle sinterization. Au(2%)/CeO2 was the most active material for the WGS reaction, and the Au(2%)/Ce80Ga20 was as active as a Au(3%)/Ce68Zr32 catalyst for CO oxidation, and even more active than the reference catalyst of the World Gold Council, Au(2%)/TiO2.  相似文献   

2.
Model catalysts of Au clusters supported on TiO2 thin films were prepared under ultra-high vacuum (UHV) conditions with average metal cluster sizes that varied from ~2.5 to ~6.0 nm. The reactivities of these Au/TiO2 catalysts were measured for CO oxidation at a total pressure of 40 Torr in a reactor contiguous to the surface analysis chamber. Catalyst structure and composition were monitored with Auger electron spectroscopy (AES) and scanning tunneling microscopy and spectroscopy (STM/STS). The apparent activation energy for the reaction between 350 and 450 K varied from 1.7 to 5 kcal/mol as the Au coverage was increased from 0.25 to 5 monolayers, corresponding to average cluster diameters of 2.5–6.0 nm. The specific rates of reaction ((product molecules) × (surface site)-1 × s-1 were dependent on the Au cluster size with a maximum occurring at 3.2 nm suggesting that CO oxidation over Au/TiO2(001)/Mo(100) is structure sensitive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The origin of CO oxidation performance variations between three different supported Au catalysts (Au/CeO2, Au/Al2O3, Au/TiO2) was examined by in situ XAFS and DRIFTS measurements. All samples were prepared identically, by deposition-precipitation of an aqueous Au(III) complex with urea, and contained the same gold loading (~1 wt %). The as-prepared supported Au(III) precursors exhibited different reduction behaviour during exposure to the CO/O2/He reaction mixture at 298 K. The reducibility of the Au(III) precursor was found to decrease as a function of the support material in the order: titania > ceria > alumina. The as-prepared samples were inactive catalysts, but Au/TiO2 and Au/CeO2 developed catalytic activity as the reduction of Au(III) to metallic Au proceeded. Au/Al2O3 remained inactive. The developed catalytic CO oxidation activity at 298 K varied as a function of the support as follows: titania > ceria > alumina ~ 0. The EXAFS of samples pretreated in air at 773 K and in H2 at 573 K reveals the presence of only metallic particles for Au/TiO2 and Au/Al2O3. Au(III) supported on CeO2 remains unreduced after calcination, but reduces during the treatment with H2. CO oxidation experiments performed at 298 K with the activated samples show that the presence of metallic gold is necessary to obtain active catalysts (Au/CeO2 is not active after calcination) and that the reducible supports facilitate the genesis of active catalysts, while metallic gold particles on alumina are not active.  相似文献   

4.
The kinetics and mechanism of the preferential oxidation of carbon monoxide in the presence of hydrogen (PrOx) over an unsupported gold powder (mean particle size 20 nm and free of silver) have been investigated using flow fixed bed catalytic testing and diffuse reflectance infrared Fourier transform spectroscopy coupled to mass spectrometry (operando DRIFTS or DRIFTS-MS). It is shown that the presence of H2 has a favourable effect on the oxidation of CO, either by strongly accelerating the reaction or by preventing the catalyst deactivation, depending on the conditions used. Variation of the hydrogen partial pressure has allowed us to determine partial reaction orders for both CO oxidation and H2 oxidation under PrOx conditions. An infrared band at 2113 cm−1, corresponding to on-top CO adsorption on metallic gold, has been observed below 150 °C. In addition, adsorbed hydroxyl groups gradually develop simultaneously to gas-phase water in the course of the reaction at increasing temperatures. The promotional effect of hydrogen is ascribed to highly oxidative HxOy intermediates formed from the interaction between H2 and O2 on the gold surface.  相似文献   

5.
Au catalysts supported on mesoporous silica and titania supports were synthesized and tested for the oxidation of CO. Two approaches were used to prepare the silica-supported catalysts utilizing complexing triamine ligands which resulted in mesoporous silica with wormhole and hexagonal structures. The use of triamine ligands is the key for the formation of uniformly sized 2–3 nm Au nanoparticles in the silica pores. On mesoporous titania, high gold dispersions were obtained without the need of a functional ligand. Au supported on titania exhibited a much higher activity for CO oxidation, even though the Au particle sizes were essentially identical on the titania and the wormhole silica supports. The results suggest that the presence of 2–3 nm particle size alone is not sufficient to achieve high activity in CO oxidation. Instead, the support may influence the activity through other possible ways including stabilization of active sub-nanometer particles, formation of active oxygen-containing reactant intermediates (such as hydroxyls or O2 ?), or stabilization of optimal Au structures.  相似文献   

6.
Au/Mg(OH)2 catalysts with two different sizes (4 and 14 nm) of Au nanoparticles (NPs) have been prepared by depositing pre-fabricated Au NPs onto Mg(OH)2 nanosheets (NSs). It was found that 14 nm Au NPs supported on Mg(OH)2 exhibited unexpected activity for CO oxidation at ambient temperature that could be comparable with those of Au NPs of 4 nm. The Mg(OH)2 support was suggested to be responsible for the observed catalytic activity of larger gold supported catalysts.  相似文献   

7.
A well-defined ceria nanocube with six (100) planes was successfully prepared by a facile hydrothermal method. Hydrogenation tests on the carbon dioxide, and several advanced analysis techniques, were used to investigate the catalytic performance of ceria nanocube for reverse water–gas shift (RWGS) and understand the governing reaction mechanism. The results demonstrated that the obtained ceria was a typical mesoporous material with a fluorite structure, and mainly had cerium with + 4 valence oxidation state. As-obtained ceria nanocube showed good performance for RWGS reaction, while nickel on ceria evidently promoted the hydrogenation of CO2. An oxygen-transformation and metal-dissociation mechanism for RWGS reaction was proposed. The dissociation of carbon dioxide over ceria by directly oxidized oxygen vacancy was considered as a main reaction pathway of RWGS. Meanwhile, dissociated adsorption of CO2 and hydrogen over nickel surface directly formed CO and supplied spillover hydrogen to nearby oxygen vacancies, respectively. The neighboring oxygen vacancies at the interface of nickel and ceria were considered as efficient active sites for CO2 hydrogenation.  相似文献   

8.
Sensitive electrochemical electrodes for hydrogen peroxide (H2O2) detection were developed using gold nanoclusters (NCs) to modify phosphorus incorporated tetrahedral amorphous carbon films (ta-C:P/Au). Au oxide covered Au NCs were electrodeposited on ta-C:P surfaces, and the size of Au/AuOx NCs ranged between 50 nm and 91 nm, depending on the deposition time. The ta-C:P/Au electrodes exhibited higher electrocatalytic activity towards H2O2 oxidation compared to ta-C:P electrodes. This is due to the three-dimensional island structure of Au/AuOx NCs, which accelerates electron exchange between ta-C:P and H2O2 in phosphate buffered solution. We also found that ta-C:P/Au electrodes with Au/AuOx NCs of a smaller size and moderate coverage exhibited larger current response to H2O2 oxidation. The results obtained from amperometric response curves indicated that the use of Au/AuOx NCs as microelectrodes directly favored H2O2 oxidation through hemispherical diffusion. The linear detection range of H2O2 at the non-enzymatic ta-C:P/Au electrodes was identified to be between 0.2 μM and 1 mM with a detection limit of 80 nM under optimized conditions. These ta-C:P/Au electrodes have potential applications in H2O2 sensing due to their high sensitivity, fast response and long-term stability.  相似文献   

9.
A new kind of intermediate hybrid nanocomposites (NCs) composed of poly(amic acid) (PAA) and surface modified ceria nanoparticles (NP)s had been prepared by sonochemical assisted synthesis. The PAA containing pendent benzamide units had been synthesized by the reaction of 3,5‐diamino‐N‐(4‐hydroxyphenyl) benzamide and benzene‐1,2,4,5‐tetracarboxylic dianhydride through polycondensation reaction. The structure of the prepared PAA was studied by spectroscopic techniques. The surface modifications of ceria NPs were achieved by using hexadecyltrimethoxysilane. Results of FTIR analysis demonstrated that the aliphatic chains have been covalently bonded to the surface of the CeO2 NPs. PAA/CeO2 NCs with different contents including 4, 8, and 12 wt% of CeO2 NPs was prepared by using sonochemical method. Characterization with FTIR, powder X‐ray diffraction, field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) confirmed the success in synthesis of NCs with well dispersion properties. XRD analysis results showed that the obtained NCs displayed the crystalline nature of ceria NPs and the amorphous character of PAA matrix. The particles size of ceria NPs in NCs are about 50–70 nm as characterized by FE‐SEM, TEM, and AFM analyses. This work demonstrates the application of intermediates as new matrices for preparation of hybrid nanostructures. POLYM. ENG. SCI., 55:2339–2348, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
Although alumina-supported gold nanoparticles are poor catalysts for the oxidation of carbon monoxide, they have turned out to be promising candidates for the preferential oxidation of CO in hydrogen-rich streams (PrOx), as hydrogen apparently enhances the CO oxidation rate. The mechanism of this promotion effect is unclear. In this study, we carry out kinetic measurements on the PrOx reaction catalyzed by a 0.9% Au/Al2O3 catalyst, which is prepared by direct anionic exchange. We show that the apparent activation energy of the oxidation of CO is lower than that of the oxidation of H2, whatever the hydrogen content in the feed. On the other hand, the hydrogen partial reaction order is higher in the oxidation of H2 than in the oxidation of CO. Thus, the CO oxidation rate is significantly increased at low temperature by the introduction of only a small amount of hydrogen in the reactant mixture. At higher temperatures, the selectivity to CO2 decreases due to competition with the oxidation of H2. Higher hydrogen concentrations cause the competition between CO and H2 oxidations to start at lower temperatures. It is proposed that hydrogen reacts with oxygen to yield highly oxidizing intermediates that selectively react with CO as long as the energetic barrier to produce water from these intermediates is not crossed.  相似文献   

11.
《Journal of Catalysis》2007,245(2):308-315
An FTIR study of CO adsorption from 120 K up to room temperature on a series of Au–ceria samples is presented. Samples with low gold content (0.7 and 0.6 at%) were prepared by urea gelation/co-precipitation and by cyanide leaching of the high-gold content (5.8 at%) material prepared by deposition–precipitation on La-doped CeO2. The samples were subjected to different pretreatments to collect information on the surface composition under working conditions. An absorption band at 2130–2140 cm−1, not reversible on outgassing and more resistant to oxidation than the usual carbonyl band on Au0 sites, was present due to CO adsorbed on cationic gold clusters. This highly stable species is relevant for hydrogen gas upgrade by removing CO from reformate-type gases at low temperatures. In addition, a broad absorption band in the 2000–2100 cm−1 range was observed after reduction in hydrogen, due to structural and electronic changes of gold. Interestingly, the reduced gold species in ceria can be reoxidized at mild conditions. Light-off of the CO oxidation reaction took place below room temperature on the metallic gold-containing ceria but was delayed until 310 K on the ionic gold-containing sample. TPR and XPS analysis of the fresh and used catalysts corroborated the stability of ionic gold in ceria up to 393 K in the reaction gas mixture.  相似文献   

12.
Different Pt‐based catalyst layers have been prepared and tested in a stacked foil microreactor for CO oxidation and preferential oxidation of CO in presence of hydrogen. The reactions were performed on Pt without support by impregnation of a pre‐oxidized microstructured metal plate, Pt/Al2O3 and Pt/CeO2 based on sol methods as well as Pt/nano‐Al2O3, a combined method of sol‐gel and nanoparticle slurry coating. The ceria based sol‐gel catalyst was much more active for CO oxidation than alumina based sol‐gel catalysts at low temperature. However, total oxidation was only obtained at higher temperature on the alumina based catalysts. The combined method seems to have advantages in terms of less internal mass transfer limitation when trying to increase the catalyst coating thickness based on sol‐gel approaches due to no reduction of CO selectivity up to 300 °C reaction temperature. Experiments on CO oxidation with the Pt/CeO2 catalyst have been conducted in an oxygen supply microreactor to evaluate the catalyst performance under sequential oxygen supply to reaction zone (CO excess).  相似文献   

13.
The effect of thermal treatment on the catalyst structure and the CO oxidation performance of a Au/TiO2 catalyst supported on a carbon composite material has been studied. X-ray absorption spectroscopy shows that the carbon composite stabilises the TiO2 and prevent agglomeration of the particles. The activity measurements show that both Au and TiO2 need to be present in order to obtain catalytic activity. The catalytic performance was found to be strongly affected by thermal treatments of the active phase prior to the reaction. The thermal treatments have an effect on the ordering of the TiO2 structure, and on the CO oxidation activity. Heat treatment after Au deposition has a positive effect on the CO oxidation performance. This is attributed to the introduction of a stronger interaction between the oxide and Au which improves the catalytic activity. This also indicates that the TiO2 support and the Au–TiO2 interface play important roles in the CO oxidation reaction.  相似文献   

14.
Nanosized gold catalysts supported on doped ceria were prepared by deposition–precipitation method. A deep characterization study by HRTEM/EDS, XRD, FT-Raman, TPR and FTIR was undergone in order to investigate the effect of ceria modification by various cations (Sm3+, La3+ and Zn2+) on structural and redox properties of gold catalysts. Doping of ceria affected in different way catalytic activity towards purification of H2 via preferential CO oxidation. The following activity order was observed: Au/Zn–CeO2 > Au/Sm–CeO2 > Au/CeO2 > Au/La–CeO2. The differences in CO oxidation rates were ascribed to different concentration of metallic gold particles on the surface of Au catalysts (as confirmed by the intensity of the band at 2103 cm−1 in the FTIR spectra collected during CO–O2 interaction). Gold catalysts on modified ceria showed improved tolerance towards the presence of CO2 and H2O in the PROX feed. The spectroscopic experiments evidence enhanced reactivity when PROX is performed in the presence of H2O already at 90 K.  相似文献   

15.
Procedures leading to the preservation of activity of supported gold catalysts for CO oxidation are reviewed. The inclusion of iron as Fe(OH)3 in preparing catalysts using tin oxide, ceria and zirconia as supports gives better activity and much improved stability with time-on-stream. In the case of Au/Fe-SnO2 (0.5–0.9% Au), the effect is maximal with ~4% Fe. The stability of catalysts based on ceria as support is also much better when small amounts of either iron or lanthanum during preparation of the support by thermal decomposition of nitrates. Au/SnO2 catalysts often suffer initial deactivation followed by an increase in activity with time-on-stream; a period of refrigeration (7d) induces an excellent stability at high conversion.  相似文献   

16.
The CO oxidation activity of Pt deposited on Ta2O5/Ta was studied with various amounts of Au post-deposited on Pt/Ta2O5/Ta. For Pt nanoparticles with a mean size of 2–4 nm, an enhancement in the CO oxidation activity with increasing amount of post-deposited Au was found. The mixed Au–Pt nanoparticles with sizes in the range of 2–4 nm exhibited higher stability than the bare Au nanoparticles with a similar size range. In contrast to the results obtained with the Pt nanoparticles, the catalytic activity of a thicker Pt film gradually decreased with increasing amount of Au deposited. Based on the CO desorption experiments, it is suggested that the surface of the catalytically active Au–Pt bimetallic structures consists of both Au and Pt sites.  相似文献   

17.
Au, Ag and Au–Ag catalysts on different supports of alumina, titania and ceria were studied for their catalytic activity of ethylene oxidation reactions. An addition of an appropriate amount of Au on Ag/Al2O3 catalyst was found to enhance the catalytic activity of the ethylene epoxidation reaction because Au acts as a diluting agent on the Ag surface creating new single silver sites which favor molecular oxygen adsorption. The Ag catalysts on both titania and ceria supports exhibited very poor catalytic activity toward the epoxidation reaction of ethylene, so pure Au catalysts on these two supports were investigated. The Au/TiO2 catalysts provided the highest selectivity of ethylene oxide with relatively low ethylene conversion whereas, the Au/CeO2 catalysts was shown to favor the total oxidation reaction over the epoxidation reaction at very low temperatures. In comparisons among the studied catalysts, the bimetallic Au–Ag/Al2O3 catalyst is the best candidate for the ethylene epoxidation. The catalytic activity of the gold catalysts was found to depend on the support material and catalyst preparation method which govern the Au particle size and the interaction between the Au particles and the support.  相似文献   

18.
Au–Cu and Pd–Cu bimetallic model catalysts were prepared on native SiO2/Si(100) substrate under ultra high vacuum (UHV) by employing buffer layer assisted growth procedure with amorphous solid water as the buffer material. The effect of the bimetallic nanoclusters (NCs) surface composition and morphology on their chemical reactivity has been studied with acetylene decomposition and conversion to ethylene and benzene as the chemical probe. It was found that among the Au–Cu NCs compositions, Au0.5Cu3 NCs revealed outstanding catalytic selectivity towards ethylene formation. These NCs were further characterized by employing TEM, XPS and HAADF-STEM coupled EDX analysis. With CO molecule as a probe, CO temperature programmed desorption has been used to investigate the distribution of gold on the top-most surface of the supported clusters. Surface segregation at high relative elemental fraction of gold leads to a decreased activity of the Au–Cu NCs towards ethylene formation. In contrast to the Au–Cu NCs, the Pd–Cu bimetallic system reveals reduced sensitivity to the relative elemental composition with respect to selectivity of the acetylene transformation toward ethylene formation. On the other hand, remarkable activity towards benzene formation has been observed at elemental composition of Cu3Pd, at comparable rates to those for ethylene formation on clean Pd NCs.  相似文献   

19.
Mesoporous Au/TiO2 Catalysts for Low Temperature CO Oxidation   总被引:1,自引:0,他引:1  
The activity and stability of structurally well defined mesoporous Au/TiO2 catalysts with different support morphologies and pore sizes for low temperature CO oxidation was investigated by kinetic measurements and in-situ IR spectroscopy. The resulting catalysts with Au particle sizes of ∼3 nm exhibit a high activity for CO oxidation, similar to or exceeding that of highly active standard Au/TiO2 catalysts with similar size Au nanoparticles and loading, and a significantly lower tendency for deactivation. Possible reasons for the improved performance of these catalysts are discussed.  相似文献   

20.
A kinetic mathematical model has been applied to investigate for the first time the effects of Pd particle size on the rates of oxygen back-spillover and CO oxidation during Oxygen Storage Capacity (OSC) measurements under dynamic conditions over Pd/CeO2 catalysts in the 500–700 °C range. The dependence of the intrinsic rate constant k1 of the CO oxidation reaction on PdO, and that of k 2 app of the oxygen back-spillover from ceria to Pd/PdO on the palladium particle size was estimated by performing curve-fitting of the experimental CO and CO2 pulse transient responses obtained. Activation energies of 8.0, 9.5 and 21.1 kJ/mol were calculated for the Eley–Rideal step of CO oxidation for the 1.3, 1.8 and 16.4 nm Pd particles, respectively, supported on CeO2. The transient rates of CO oxidation and oxygen back-spillover were found to decrease with increasing Pd particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号