首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas–solid fluidization involving small amounts of liquid is simulated using a CFD‐DEM model. The model tracks the amount of liquid on each particle and wall element and incorporates finite rates of liquid transfer between particles and pendular liquid bridges which form between two particles as well as between a particle and a wall element. Viscous and capillary forces due to these bridges are modeled. Fluidization–defluidization curves show that minimum fluidization velocity and defluidized bed height increase with Bond number (Bo), the ratio of surface tension to gravitational forces, due to cohesion and inhomogeneous flow structures. Under fluidized conditions, hydrodynamics and liquid bridging behavior change dramatically with increasing Bo, and to a lesser extent with capillary number, the ratio of viscous to surface tension forces. Bed fluidity is kept relatively constant across wetting conditions when one maintains a constant ratio of superficial velocity to minimum fluidization velocity under wet conditions. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5290–5302, 2017  相似文献   

2.
Gas–solid fluidization has a wide range of industrial applications like catalytic reactions, combustion, gasification, etc. In a number of these applications, there is particle size reduction during the operation leading to severe entrainment and limitation of operating velocity. The various problems associated with particles of different sizes or changing particles sizes could be overcome by adopting tapered beds in fluidization operation. In the present investigation, the fluidization phenomenon in tapered beds has been critically assessed through experimental investigations using particles of different sizes and materials and wide range of apex angles of the vessels. The effect of particle size and apex angle on the fluidization behaviour is clearly brought out which has not been reported so far in literature. The importance of compressive force existing in tapered beds is highlighted. In addition, correlations for all hydrodynamic characteristics, viz. critical fluidization velocity, minimum velocity for full fluidization, maximum velocity for defluidization, peak pressure drop, fluctuation ratio, compressive force, and hysteresis have been developed some of which are proposed for the first time.  相似文献   

3.
The purpose of this study is to present some new data to estimate minimum fluidization velocity (umf) in a two-dimensional bed. When investigating fluidodynamics with a fluidized bed, a fixed normalised parameter is needed. This parameter stands for the degree of mixing and its outcome between the phases. It is well known that the minimum fluidization velocity is normally used to represent the transition from fixed to fluidized bed conditions. Fluidization experiments with different height and weight bed and for different particle sizes were carried out in a two-dimensional fluidized bed. Minimum fluidization velocity was found to be a function of bed weight, particle diameter and column width.  相似文献   

4.
This work reports our pioneering application of the nuclear magnetic resonance imaging (MRI) technique to the dynamic in situ studies of gas–liquid–solid reactions carried out in a catalytic trickle bed reactor at elevated temperature. The major advance of these studies is that MRI experiments are performed under reactive conditions. We have applied MRI to map the distribution of liquid phase inside a catalyst pellet as well as in a catalyst bed in an operating trickle-bed reactor. In particular, our studies have revealed the existence of the oscillating regimes of the heterogeneous catalytic hydrogenation reaction caused by the oscillations of the catalyst temperature and directly demonstrated the existence of the coupling of mass and heat transport and phase transitions with chemical reaction. The existence of the partially wetted pellets in a catalyst bed which are potentially responsible for the appearance of hot spots in the reactor has been also visualized. The combination of NMR spectroscopy with MRI has been used to visualize the spatial distribution of the reactant-to-product conversion within an operating reactor.  相似文献   

5.
Using CFD‐DEM simulations, a wet agglomerate of particles was placed in a void region of a dry vigorously fluidized bed to understand how wet agglomerates grow or breakup and how liquid spreads when agglomerates interact with dry fluidized particles. In the CFD‐DEM model, cohesive and viscous forces arising from liquid bridges between particles were modeled, as well as a finite rate of liquid bridge filling. The liquid properties were varied between different simulations to vary Bond number (surface tension forces/gravitational forces) and Capillary number (viscous forces/surface tension forces) in the system. Resulting agglomerate behavior was divided into regimes of (i) the agglomerate breaking up, (ii) the agglomerate retaining its initial form, but not growing, and (iii) the agglomerate retaining its initial form and growing. Regimes were mapped based on Bo and Ca. Implications of agglomerate behavior on spreading of liquid to initially dry particles were investigated. This article identifies a new way to map agglomerate growth and breakup behavior based on Bo and Ca. In modeling both liquid forces and a finite rate of liquid transfer, it identifies the complex influence viscosity has on agglomeration by strengthening liquid bridges while slowing their formation. Viewing Ca as the ratio of bridge formation time to particle collision and separation time capture why agglomerates with high Ca struggle to grow. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2520–2527, 2017  相似文献   

6.
Experiments were performed to study the hydrodynamics of a cocurrent three‐phase fluidized bed with liquid as continuous phase. Based on the 209 experimental data (with four liquid systems and five different particles) along with 115 literature data from six different sources on minimum fluidization velocity, a unique correlation for the estimation of minimum fluidization velocity in two‐phase (ug = 0) as well as in three‐phase systems is developed. A data bank consisting of 1420 experimental measurements for the fractional gas phase holdup data with a wide range of variables is used for developing empirical correlations. Separate correlations are developed for two flow regimes observed in this present work. The proposed correlations are more accurate and simpler to use. © 2002 Society of Chemical Industry  相似文献   

7.
Hydrodynamic experiments were performed using a 127‐mm diameter column with 3.2‐mm porous alumina, 3.3‐mm polymer blend, 5.5‐mm polystyrene and 6.0‐mm glass spheres, with water, aqueous glycerol solution and silicone oil as liquids, and air as the gas. The voidage at minimum fluidization fell initially to a minimum, then rose gradually with increasing superficial gas velocity, and was lower for three‐phase systems than for corresponding two‐phase (liquid–solid) fluidized beds. The compaction appears to be due to agitation by gas bubbles near the minimum liquid fluidization condition. The gas holdups agree reasonably well with the correlation of Yang et al. (1993). Curves of minimum liquid fluidization velocity, Ulmf, vs. superficial gas velocity, Ug always show Ulmf decreasing as Ug increases, initially in a concave‐downward manner, but sometimes concave‐upward.  相似文献   

8.
The article presents first experimental results on gas–solid fluidization in a tapered bed in presence of an external transverse magnetic field that creates a novel branch in magnetically assisted fluidization. Phase diagrams similar to those used to describe cylindrical beds have been created to distinguish the bed regimes occurring under the action of two principle macroscopic variables such as field intensity and gas flow rate. A detailed analysis and parallelism to the bed behaviour exhibited by non‐magnetic spouted beds of cohesive particles have been performed. Principle process variables such as bed depth, field intensity, particle size, cone angle have been detected. A dimensional analysis utilizing a “pressure transform” of the initial set of variables has been applied to develop scaling relationships. Examples of scaling experimental data pertinent to the minimum spouting point and involving the magnetic granular Bond number have been developed.  相似文献   

9.
The initial fluidization characteristics of gas‐liquid‐solid minifluidized beds (MFBs) were experimentally investigated based on the analyses of bed pressure drop and visual observations. The results show that ULmf in 3–5 mm MFBs can not be determined due to the extensive pressure drop fluctuations resulting from complex bubble behavior. For 8–10 mm MFBs, ULmf can be confirmed from both datum analyses of pressure drop and Hurst exponent at low superficial gas velocity. But at high superficial gas velocity, ULmf was not obtained because the turning point at which the flow regime changes from the packed bed to the fluidized bed disappeared, and the bed was in a half fluidization state. Complex bubble growth behavior resulting from the effect of properties of gas‐liquid mixture and bed walls plays an important role in the fluidization of solid particles and leads to the reduction of ULmf. An empirical correlation was suggested to predict ULmf in MFBs. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1940–1957, 2016  相似文献   

10.
11.
Effect of temperature on the hydrodynamics of bubbling gas–solid fluidized beds was investigated in this work. Experiments were carried out at different temperatures ranged of 25–600°C and different superficial gas velocities in the range of 0.17–0.78 m/s with sand particles. The time‐position trajectory of particles was obtained by the radioactive particle tracking technique at elevated temperature. These data were used for determination of some hydrodynamic parameters (mean velocity of upward and downward‐moving particles, jump frequency, cycle frequency, and axial/radial diffusivities) which are representative to solids mixing through the bed. It was shown that solids mixing and diffusivity of particles increases by increasing temperature up to around 300°C. However, these parameters decrease by further increasing the temperature to higher than 300°C. This could be attributed to the properties of bubble and emulsion phases. Results of this study indicated that the bubbles grow up to a maximum diameter by increasing the temperature up to 300°C, after which the bubbles become smaller. The results showed that due to the wall effect, there is no significant change in the mean velocity of downward‐moving clusters. In order to explain these trends, surface tension of emulsion between the rising bubble and the emulsion phase was introduced and evaluated in the bubbling fluidized bed. The results showed that surface tension between bubble and emulsion is increased by increasing temperature up to 300°C, however, after that it acts in oppositely.  相似文献   

12.
Experiments have been carried out to study the individual phase holdup characteristics in a cocurrent three‐phase fluidized bed. An antenna type modified air sparger has been used in the gas–liquid distributor section, for uniform mixing of the fluids with the gas moving as fine bubbles to the fluidizing section. This arrangement also reduces the pressure drop encountered through a conventional distributor used for the purpose. To overcome the non‐uniformity of flow through the column (i.e., the central region), a distributor plate with 20% open area has been fabricated with concentric circular punched holes of increased diameter from centre to the wall. Model equations have been developed by factorial design analysis for predicting various individual phase holdups.  相似文献   

13.
14.
The problems associated with conventional (cylindrical) fluidized beds, viz., fluidization of wider size range of particles, entrainment of particles and limitation of fluidization velocity could be overcome by using tapered fluidized beds. Limited work has been carried out to study the hydrodynamics of single materials with uniform size particles in tapered beds. In the present work, an attempt has been made to study the hydrodynamic characteristics of binary mixtures of homogeneous and heterogeneous regular particles (glass bead and sago) in tapered fluidized beds having different tapered angles. Correlations have been developed for critical fluidization velocity and maximum bed pressure drop for gas–solid tapered fluidized beds for binary mixtures of regular particles. Model predictions were compared with experimental data, which were in good agreement.  相似文献   

15.
Devising a new mechanistic method to predict gas–liquid interface shape in horizontal pipes is concerned in this article. An experiment was conducted to find the pressure gradients of air–water flow through a 1‐in. pipe diameter. Comparing results of model with some experimental data available in the literature demonstrates that the model provides quite better predictions than existed models do. This model also predicts flow regime transition from stratified to annular flow better than Apparent Rough Surface and Modified Apparent Rough Surface models for both 1‐ and 2‐in. pipe diameters. The model also leads to reliable predictions of wetted wall fraction experimental data. Although one parameter of new model was evaluated based on air–water flow pressure loss experimental data for 1 in. pipe, it was considerably successful to predict pressure drop, liquid holdup, stratified‐annular transition and wetted wall fraction for other gas–liquid systems and pipe diameters. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1043–1053, 2015  相似文献   

16.
Heat transfer in dense fluidized beds have been extensively studied. However, there is not much detailed information about the mechanism of surface-to-suspension heat transfer in the freeboard region. In the present work, a newly designed heating plate was used to measure the plate-surface-to-particle-suspension heat transfer coefficients in the freeboard.The experimental unit consisted of a 30 cm i.d. fluidized bed reactor packed with fluidized catalytic particles of mean particle size 90 μm. Three types of plate orientations were used to test directional effects of surface on heat transfer rate. Height of the freeboard was 171 cm, and the superficial gas velocity was varied from 0.28 to 0.64 m/s. Local solids concentrations in the freeboard were also obtained by a nozzle-type sampling probe. Data on axial distribution of solids concentration were used to find out the solids kinematics in the freeboard region. Finally, a surface-to-suspension heat transfer model was developed to elucidate the surface to particle heat transfer mechanism in this lean phase system.The model is based on the transient gas-convective heating of single particles when sliding over the heating plate and the assumption of instantaneous attachment–detachment equilibrium between particles and the plate surface.  相似文献   

17.
The tapered fluidized bed is a remedial measure for certain drawbacks of the gas–solid system, by the fact that a velocity gradient exists along the axial direction of the bed with increase in cross-sectional area. To study the dynamic characteristics of heterogeneous binary mixture of irregular particles, several experiments have been carried out with varying tapered angles and composition of the mixtures with various particles. The tapered angle of the bed has been found to affect the characteristics of the bed. Models based on dimensional analysis have been proposed to predict the critical fluidization velocity and maximum bed pressure drop for gas–solid tapered fluidized beds. Experimental values of critical fluidization velocity and maximum bed pressure drop compare well with that predicted by the proposed models and the average absolute errors are well within 15%.  相似文献   

18.
Computational fluid dynamics—discrete element method (CFD‐DEM) simulations were conducted and compared with magnetic resonance imaging (MRI) measurements (Boyce, Rice, and Ozel et al., Phys Rev Fluids. 2016;1(7):074201) of gas and particle motion in a three‐dimensional cylindrical bubbling fluidized bed. Experimental particles had a kidney‐bean‐like shape, while particles were simulated as being spherical; to account for non‐sphericity, “effective” diameters were introduced to calculate drag and void fraction, such that the void fraction at minimum fluidization (εmf) and the minimum fluidization velocity (Umf) in the simulations matched experimental values. With the use of effective diameters, similar bubbling patterns were seen in experiments and simulations, and the simulation predictions matched measurements of average gas and particle velocity in bubbling and emulsion regions low in the bed. Simulations which did not employ effective diameters were found to produce vastly different bubbling patterns when different drag laws were used. Both MRI results and CFD‐DEM simulations agreed with classic analytical theory for gas flow and bubble motion in bubbling fluidized beds. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2555–2568, 2017  相似文献   

19.
The electrostatic charge distribution in a lab‐scale 2‐D fluidized bed of 900 µm glass beads was determined using arrays of induction probes, and the influence of relative humidity and superficial gas velocity was examined. The bubble presence, relative humidity, and superficial gas velocity were found to influence charge separation. Bipolar charging was observed; the net charge build‐up was found to be negligible. Moreover, the system was monitored by applying the attractor comparison method to the electrostatic charge signals from an induction probe. It was concluded that this approach can indeed be used to monitor changes in the electrostatic behaviour.  相似文献   

20.
A phenomenological discrete bubble model is proposed to help in the design and dynamic diagnosis of bubbling fluidized beds. An activation region mechanism is presented for bubble formation, making it possible to model large beds in a timely manner. The bubbles are modeled as spherical‐cap discrete elements that rise through the emulsion phase that is considered as a continuum. The model accounts for the simultaneous interaction of neighboring bubbles by including the trailing effects due to the wake acceleration force. The coalescence process is not irreversible and therefore, the coalescing bubble pair is free to interact with other rising bubbles originating the splitting phenomena. To validate the model, the simulated dynamics are compared with both experimental and literature data. Time, frequency, and state space analysis are complementarily used with a multiresolution approach based on the empirical method of decomposition to explore the different dynamic scales appearing in both the simulated time series and those obtained from experimental runs. It is concluded that the bubble dynamics interactions play the main role as the driver of the resulting bed dynamics, matching the main features of measured bubble dynamics. Exploding bubble phenomena have been identified by establishing a direct relation between the bubble generation, interaction and eruption, and the measured signals. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号