首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mass transfer performance of CO2 absorption into blended N,N‐diethylethanolamine (DEEA)/ethanolamine (MEA) solutions was investigated using a lab‐scale absorber (H = 1.28 m, D = 28 mm) packed with Dixon ring random packing. The mass transfer coefficient KGav, the unit volume absorption rate Φ, outlet concentration of CO2 (yCO2), and the bottom temperature Tbot of CO2 in aqueous DEEA/MEA solutions were determined over the feed temperature range of 298.15–323.15 K, lean CO2 loading of 0.15–0.31 mol/mol, over a wide range of liquid flow rate of 3.90–9.75 m3/m2‐h, by using inert gas flow rate of 26.11–39.17 kmol/m2‐h and 6–18 kPa CO2 partial pressure. The results show that liquid feed temperature, lean CO2 loading, liquid flow rate, and CO2 partial pressure had significant effect on those parameters. However, the inert gas flow rate had little effect. To allow the mass transfer data to be really utilized, KGav and yout correlations for the prediction of mass transfer performance were proposed and discussed. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3048–3057, 2017  相似文献   

2.
A stopped‐flow apparatus was used to measure the kinetics of carbon dioxide (CO2) absorption into aqueous solution of 1‐diethylamino‐2‐propanol (1DEA2P) in terms of observed pseudo‐first‐order rate constant (ko) and second‐order reaction rate constant (k2), in this work. The experiments were conducted over a 1DEA2P concentration range of 120–751 mol/m3, and a temperature range of 298–313 K. As 1DEA2P is a tertiary amine, the base‐catalyzed hydration mechanism was, then, applied to correlate the experimental CO2 absorption rate constants obtained from stopped‐flow apparatus. In addition, the pKa of 1DEA2P was experimentally measured over a temperature range of 278–333 K. The Brønsted relationship between reaction rate constant (obtained from stopped‐flow apparatus) and pKa was, then, studied. The results showed that the correlation based on the Brønsted relationship performed very well for predicting the absorption rate constant with an absolute average deviation of 5.2%, which is in an acceptable range of less than 10%. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3502–3510, 2014  相似文献   

3.
4.
CO2 absorption into aqueous solutions of two tertiary alkanolamines, namely, MDEA and DMEA with and without carbonic anhydrase (CA) was investigated with the use of the stopped‐flow technique at temperatures in the range of 293–313 K, CA concentration varying from 0 to 100 g/m3 in aqueous MDEA solution with the amine concentration ranging from 0.1 to 0.5 kmol/m3, and CA concentration varying from 0 to 40 g/m3 in aqueous DMEA solution with the amine concentration ranging from 0.05 to 0.25 kmol/m3. The results show that the pseudofirst‐order reaction rate (k0, amine; s?1) is significantly enhanced in the presence of CA as compared with that without CA. The enhanced values of the kinetic constant in the presence of CA has been calculated and a new kinetics model for reaction of CO2 absorption into aqueous tertiary alkanolamine solutions catalyzed by CA has been established and used to make comparisons of experimental and calculated pseudo first‐order reaction rate constant (k0, with CA) in CO2‐MDEA‐H2O and CO2‐DMEA‐H2O solutions. The AADs were 15.21 and 15.17%, respectively. The effect of pKa on the CA activities has also been studied by comparison of CA activities in different tertiary amine solutions, namely, TEA, MDEA, DMEA, and DEEA. The pKa trend for amines were: DEEA > DMEA > MDEA > TEA. In contrast, the catalyst enhancement in amines was in the order: TEA> MDEA> DMEA> DEEA. Therefore, it can be seen that the catalyst enhancement in the amines decreased with their increasing pKa values. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

5.
刘敦禹  程潜  金晶 《化工进展》2018,37(Z1):35-42
采用基于pH测量的CO2吸收速率研究方法。将pH与溶液中的成分相关联,采用分段拟合获得CO2吸收速率,获得溶液成分对吸收速率的影响规律。对于低浓度的NaOH来说,吸收速率一直保持不变直到CO2物理吸收到NaHCO3溶液中。对于高浓度的NaOH,NaOH完全转化成Na2CO3时,吸收速率降低。但在两个吸收阶段中,吸收速率不变,CO2物理吸收到NaHCO3中时,吸收速率随CO2饱和度的增加而降低。对CO2吸收到NaOH中,CO2和钠离子浓度都促进吸收,钠离子浓度影响更大;对于CO2吸收到Na2CO3中,当Na2CO3浓度大于0.05mol/L,吸收速率不随浓度增加;对于CO2吸收到NaHCO3中,低浓度的钠可以促进CO2吸收,而高浓度的钠抑制CO2吸收,这主要由于析盐的作用。为避免CO2大量吸收,优先选择0.5mol/L以上浓度的NaHCO3。  相似文献   

6.
以MDEA为主体的混合胺溶液吸收CO2研究进展   总被引:4,自引:0,他引:4  
陈颖  赵越超  梁宏宝  张宏宇 《陕西化工》2014,(3):531-534,538
综述了近年来乙醇胺、二乙醇胺、哌嗪、碳酸酐酶以及离子液体与N-甲基二乙醇胺的混合溶液用于CO2吸收的研究进展;分析了混合溶液的吸收机理和CO2吸收的动力学;讨论了混合溶液组成、体系温度、压力等对吸收性能的影响;并对该法未来的研究方向和发展前景进行了展望.  相似文献   

7.
CO2 separation with harmful chemicals will damage the environment. It is essential to explore greener solvents that are producible from renewable resources such as biomass. The suitability of N-methyl-D-glucamine (MG), also known as meglumine, for capturing CO2, was explored in this work. This nontoxic amino sugar, which is derived from sorbitol, represents a renewable bio-solvent. It was found that MG is especially reactive with CO2. Trials were performed in a stirred cell reactor with a flat gas–liquid interface between 303 and 313 K. The values of the pseudo-first-order reaction rate constant, reaction orders, and activation energy were found. The loading capacity (α) of 0.5 M MG solution was measured at T = 308 K. For a typical value of α = 0.524 mol CO2/mol MG, the corresponding equilibrium partial pressure of CO2 was 22 kPa. Finally, it was found that the catalyst Al2O3 aided in the desorption of CO2-loaded MG solutions. Desorption efficiency using Al2O3 was higher (74%) than that achieved without this catalyst (45%). It is thus clear that MG represents a potential solvent for improved CO2 separation from gases.  相似文献   

8.
压力对N-甲基二乙醇胺混合哌嗪水溶液脱碳速率的影响   总被引:2,自引:0,他引:2  
张旭  王军  张成芳  杨燕华 《化学工程》2005,33(1):9-11,27
通过实验室填料塔研究了加压下(0. 2—0. 6MPa)哌嗪 (PZ)混合N 甲基二乙醇胺 (MDEA)水溶液吸收CO2的动力学。研究结果表明当CO2 分压大于 0. 1MPa时,压力会强化在气液界面的表面扰动,使得CO2 吸收速率较常压模型值大,并且该速率随压力的增大而增加。得到了哌嗪混合MDEA水溶液脱碳常压动力学模型的压力修正式。  相似文献   

9.
Measurements of kinetics rates of CO2 in aqueous solutions of methyldiethanolamine (MDEA), piperazine (PZ), and mixtures of (MDEA + PZ), (PZ + sulfolane) and (MDEA + sulfolane) were carried out using the stopped flow technique, and reported in terms of pseudo-first-order rate constants (k0). When possible, the second-order reaction rate constants (k2) were regressed from the data. Experiments were performed over new concentration ranges of (10–60), (200–800), (200–800, 10–40), (10–40, 10–200), and (200–800, 10–200) mol/m3 for the above-mentioned five systems, respectively, and at temperatures varying from (298.15–313.15 K). When sulfolane was added to the amine solution, pseudo-first-order rate constants in the mixed solvents were higher than in aqueous MDEA and PZ solutions at all temperatures. The kinetic rates were highest at 298.15 K and decreased at higher temperatures for aqueous (MDEA + sulfolane) solutions but increased with temperature for aqueous (PZ + sulfolane) systems. Reaction orders for both PZ and MDEA were practically one at all sulfolane concentrations and temperatures. The base catalysis mechanism was used to regress very well data for aqueous MDEA and (MDEA + sulfolane + water) and the termolecular mechanism was used for (PZ + sulfolane + water) system. Both the zwitterion and termolecular models were able to fit the experimental data for the aqueous PZ system well. Finally, the termolecular and a hybrid model based on the combination of the Zwitterion and base catalysis mechanisms were able to successfully correlate the experimental data for the mixed aqueous (MDEA + PZ) systems.  相似文献   

10.
采用高速摄像仪对400 μm×400 μm T形微通道内单乙醇胺(MEA)水溶液吸收混合气中CO2过程的气液两相流及传质特性进行了实验研究,微通道内的压力降采用压力传感器进行测量。考察了弹状流型下气液两相流量及MEA浓度对压力降、比表面积和传质性能的影响。结果表明,当MEA浓度不变,气液两相流量增大时,压力降、比表面积、传质系数、体积传质系数和增强因子均增大,并逐渐趋于恒定。当气液流量不变,MEA浓度增大时,压力降、传质系数、体积传质系数和增强因子增大,但比表面积减小。实验条件下,压力降范围为2.00~5.23 kPa,化学吸收过程的传质系数范围为7.74×10-4~2.97×10-3 m·s-1。对于伴有快速化学反应的传质过程,以Sherwood数、Reynolds数、Schmidt数及增强因子为变量建立了体积传质系数的预测关联式,平均偏差为5.09%,具有良好的预测性能。  相似文献   

11.
张芳芳  丁玉栋  朱恂  廖强  王宏  赵林林 《化工学报》2015,66(5):1760-1766
以氨基酸离子液体和乙醇胺混合水溶液为吸收剂研究逆流气体对竖直平板降膜流型转换的影响,考察了3种流型下液体流量和入口温度、气体流量和进口CO2浓度对CO2吸收性能的影响。结果表明:随着液体流量的增加,液膜呈现溪流、片状流和完整流3种流型,降膜流型转换临界流量随逆流气体流量增大而增加;溪流和片状流时CO2吸收速率随液体流量的增加而增加,但在完整流条件下基本不变;完整流下具有较高的CO2吸收速率,然而溪流下的液相传质系数最高。  相似文献   

12.
采用热重-差式扫描量热分析(TG-DSC),分别在空气气氛和81%空气-19%二氧化碳混合气氛下,对 4种不同品质的石灰石进行热分解特性研究。结果表明,在空气气氛中,石灰石分解遵循相边界一维反应模型,即 G(α)=α;在81%空气-19%二氧化碳气氛中,石灰石分解遵循随机成核和随后生长模型,即G(α)=-ln(1-α)。在81%空气-19%二氧化碳气氛中,较高的二氧化碳分压延迟了碳酸钙的分解,使得石灰石分解的开始温度比空气气氛中高200 ℃左右,分解活化能约为空气气氛的3倍,且粒径大到一定程度后活化能变小。碳酸镁的存在可以促进碳酸钙的分解。在81%空气-19%二氧化碳气氛下,适宜的石灰石粒度为小于0.105 mm,适宜的分解控制温度为890 ℃。  相似文献   

13.
林冠屹  朱春英  付涛涛  马友光 《化工学报》2018,69(11):4675-4682
研究了T形微通道内N-甲基二乙醇胺(MDEA)和单乙醇胺(MEA)混合水溶液吸收CO2的传质过程。考察了弹状流型下气液两相流量、MEA和MDEA浓度对液侧传质系数kL和体积传质系数kLa的影响。液侧传质系数和体积传质系数均会随着MEA浓度的升高而升高。与MEA相比,MDEA浓度的提高对传质影响较小。传质系数会随着液体流量的增大而增大,但气体流量的变化对其影响较小。体积传质系数随液体流量的增大而增大,但随气体流量的增大先增大,之后趋于稳定。考虑到化学反应对传质的强化作用,引入了Hatta数,提出了一个新的体积传质系数预测式,预测效果良好。  相似文献   

14.
In this work, CO2 equilibrium solubility of 1M N,N-diethylethanolamine (DEEA):2M 1,6-hexamethyl diamine (HMDA), 1.5M DEEA:1.5M HMDA and 2M DEEA:1M HMDA was studied with a temperature range of 298–333 K and CO2 partial pressure range of 8–100 kPa. Seven thermodynamic models including Empirical model, Kent and Eisenberg (KE) model, Hu–Chakma model, Austgen model, Helei Liu model, Liu et al. model, and Li–Shen model were developed by correlating reaction equilibrium constants with observed equilibrium solubility of CO2 in mixed amine solvents. The evaluation of those models was conducted in terms of the average absolute relative deviation (AARD). The results indicated that Liu et al. model considering T, [Amine], Ptotal and [CO2(aq)] can better represent this complex system with an AARD of 8.06%. Meanwhile, comprehensive comparison and analysis were also performed to identify the contribution of parameters to develop models, which could provide a guideline for the development of accurate thermodynamic models for representation of thermodynamic behaviors.  相似文献   

15.
Observed pseudo‐first‐order rate constants (ko) for the reaction between CO2 and 2‐((2‐aminoethyl) amino) ethanol (AEEA) were measured using the stopped‐flow technique in an aqueous system at 298, 303, 308 and 313 K, and in non‐aqueous systems of methanol and ethanol at 293, 298, 303 and 308 K. Alkanolamine concentrations ranged from 9.93 to 80.29 mol m?3 for the aqueous system, 29.99–88.3 mol m?3 for methanol and 44.17–99.28 mol m?3 for ethanol. Experimentally obtained rate constants were correlated with two mechanisms. For both the aqueous‐ and non‐aqueous‐AEEA systems, the zwitterion mechanism with a fast deprotonation step correlated the data well as assessed by the reported statistical analysis. As expected, the reaction rate of CO2 in the aqueous‐AEEA system was found to be much faster than in methanol or ethanol. Compared to other promising amines and diamines studied using the stopped‐flow apparatus, the pseudo‐first‐order reaction rate constants were found to obey the following order: PZ (cyclic‐diamine) > EDA (diamine) > AEEA (diamine) > 3‐AP (primary amine) > MEA (primary amine) > EEA (primary amine) > MO (cyclic‐amine). The reaction rate constant of CO2 in aqueous‐AEEA was double that in aqueous‐MEA, and the difference increased with an increase in concentration. All reaction orders were practically unity. With a higher capacity for carbon dioxide and a higher reaction rate, AEEA could have been a good substitute to MEA if not for its high thermal degradation. AEEA kinetic behaviour is still of interest as a degradation product of MEA. © 2012 Canadian Society for Chemical Engineering  相似文献   

16.
Aqueous solutions containing alkaline salts of natural amino acids, such as those from protein in plant seeds or high protein animal-based waste, are green CO2-separation solvents. In the present work, potassium salts of nine such amino acids were chosen for an in-depth study: alanine, arginine, aspartic acid, glutamic acid, glycine, leucine, proline, serine, and valine. The kinetics of CO2 absorption in aqueous solutions of these salts was studied using a stirred cell. From the measurements of the absorption rate at different salt concentrations (molarity 0.1 and higher), CO2 partial pressures (5–25 kPa), and temperatures (298–308 K), values of the reaction order, rate constant, and activation energy were determined. Additionally, the liquid-side mass transfer coefficient (0.005 cm/s) was also found. Potassium salts of proline, glycine, and arginine were most reactive and, hence, were chosen for equilibrium study. The loading capacity of these salts was measured at 308 K in a vapour–liquid equilibrium setup at near-ambient pressure. On the contrary, the other chosen acids were comparatively less reactive with CO2.  相似文献   

17.
Absorption rates for CO2 into aqueous solutions of TEA, MDEA and blends of MEA with MDEA and TEA were measured in a stirred cell by a method similar to that used by Laddha and Danckwerts (1981). Second order rate constants for CO2-TEA and CO2-MDEA were obtained from the single amine data for temperatures in the range of 25-60°C. A modified pseudo first order model based on the film theory is used to predict the rate of absorption of CO2 into mixed amine solutions. This model accounts for the variation of amine concentration in the film and assumes a shuttle mechanism for rate enhancement. Bulk liquid concentrations of the various species present are obtained from a simplified thermodynamic model. The model predicts absorption rates that are in agreement with experimental measurements.  相似文献   

18.
The reaction kinetics and molecular mechanisms of CO2 absorption using nonaqueous and aqueous monoethanolamine (MEA)/methyldiethanolamine (MDEA)/2-amino-2-methy-1-propanol (AMP) solutions were analyzed by the stopped-flow technique and ab initio molecular dynamics (AIMD) simulations. Pseudo first-order rate constants (k0) of reactions between CO2 and amines were measured. A kinetic model was proposed to correlate the k0 to the amine concentration, and was proved to perform well for predicting the relationship between k0 and the amine concentration. The experimental results showed that AMP/MDEA only took part in the deprotonation of MEA-zwitterion in nonaqueous MEA + AMP/MEA + MDEA solutions. In aqueous solutions, AMP can also react with CO2 through base-catalyzed hydration mechanism beside the zwitterion mechanism. Molecular mechanisms of CO2 absorption were also explored by AIMD simulations coupled with metadynamics sampling. The predicted free-energy barriers of key elementary reactions verified the kinetic model and demonstrated the different molecular mechanisms for the reaction between CO2 and AMP.  相似文献   

19.
The Inter-governmental Panel on Climate Change (IPCC) reported that human activities result in the production of greenhouse gases (CO2, CH4, N2O and CFCs), which significantly contribute to global warming, one of the most serious environmental problems. Under these circumstances, most nations have shown a willingness to suffer economic burdens by signing the Kyoto Protocol, which took effect from February 2005. Therefore, an innovative technology for the simultaneously removal carbon dioxide (CO2) and nitrogen dioxide (NO2), which are discharged in great quantities from fossil fuel-fired power plants and incineration facilities, must be developed to reduce these economical burdens. In this study, a blend of AMP and NH3 was used to achieve high absorption rates for CO2, as suggested in several publications. The absorption rates of CO2, SO2 and NO2 into aqueous AMP and blended AMP+NH3 solutions were measured using a stirred-cell reactor at 293, 303 and 313 K. The reaction rate constants were determined from the measured absorption rates. The effect of adding NH3 to enhance the absorption characteristics of AMP was also studied. The performance of the reactions was evaluated under various operating conditions. From the results, the reactions with SO2 and NO2 into aqueous AMP and AMP+NH3 solutions were classified as instantaneous reactions. The absorption rates increased with increasing reaction temperature and NH3 concentration. The reaction rates of 1, 3 and 5 wt% NH3 blended with 30 wt% AMP solution with respect to CO2/SO2/NO2 at 313 K were 6.05~8.49×10?6, 7.16–10.41×10?6 and 8.02~12.0×10?6 kmol m?2s?1, respectively. These values were approximately 32.3–38.7% higher than with aqueous AMP solution alone. The rate of the simultaneous absorption of CO2/SO2/NO2 into aqueous AMP+NH3 solution was 3.83–4.87×10?6 kmol m?2s?1 at 15 kPa, which was an increase of 15.0–16.9% compared to 30 wt% AMP solution alone. This may have been caused by the NH3 solution acting as an alternative for CO2/SO2/NO2 controls from flue gas due to its high absorption capacity and fast absorption rate.  相似文献   

20.
The solubilities of N2O and CO2 in aqueous sulfolane solutions and pure sulfolane solvent, and the diffusivities of N2O in aqueous sulfolane solutions were measured and correlated over the temperature range from 20° to 85°C; also, the data for density and viscosity that were needed in this experimental work were measured. This experiment revealed that the parameter of N2O analogy method depends not only on the temperature, but also on the character of the solvent. Therefore, different solvents possess different analogy parameters. Only for dilute aqueous solutions can the parameter be replaced by the analogy parameter of water. The results also proved that the sum of volume fractions contribution is a simple method to estimate the solubility in aqueous sulfolane solutions over the whole range of the concentrations and experimental temperatures, with an average deviation of less than 4·0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号