首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One week after a single administration of 3,4-methylenedioxymethamphetamine (MDMA HCI, 30 mg/kg i.p.), 5-HT1A receptor density was significantly increased by approximately 25-30% in the frontal cortex and hypothalamus of rats. The increased density correlated with the potentiation of the hypothermic response to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 1 mg/kg s.c.). Hypothalamic 5-HT7 receptors, which also bind 8-OH-DPAT, were not changed, however, by MDMA. Fluoxetine (5 mg/kg s.c.), ketanserin (5 mg/kg s.c.) or haloperidol (2 mg/kg i.p.), given 15 min prior to MDMA, prevented the depletion of 5-hydroxytryptamine (5-HT) induced by MDMA and also blocked the effects of this neurotoxin on 5-HT1A receptor density and on 8-OH-DPAT-induced hypothermia. The protection afforded by drugs against 5-HT loss did not correlate, however, with the antagonism of the acute hyperthermic effect of MDMA. The present results indicate that drugs able to prevent or to attenuate MDMA-induced 5-HT loss also prevent the changes in 5-HT1A receptor density as well as the enhanced hypothermic response to the 5-HT1A receptor agonist 8-OH-DPAT in MDMA-treated rats.  相似文献   

2.
The administration of the 5-hydroxytryptamine (5-HT) precursor 5-hydroxytryptophan (5-HTP) (25 mg/kg i.p.), in combination with an inhibitor of peripheral 5-HTP decarboxylase, produced a dose-dependent increase in the ejaculation latency of male rats, and this effect was enhanced by additional treatment with the 5-HT1 receptor antagonist (-)-pindolol (2 mg/kg s.c.). The 5-HT2A/C receptor agonist (+/-) 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.125-0.5 mg/kg s.c.) did not by itself affect male ejaculatory behavior, but additional treatment with (-)-pindolol (2 mg/kg s.c.) produced a dose-dependent decrease in number of ejaculating animals. The increased ejaculation latency produced by 5-HTP was fully antagonized by treatment with the 5-HT1B receptor antagonist isamoltane (4 mg/kg s.c.), but not by ritanserin (2 mg/kg s.c.) treatment. The selective 5-HT1A receptor antagonist WAY-100635 (0.15 mg/kg s.c.) enhanced the inhibitory actions of 5-HTP on the male rat ejaculatory behavior, and this dose of WAY-100635 fully antagonized 8-OH-DPAT-induced facilitation (0.25 mg/kg s.c.) of the ejaculatory behavior. WAY-100635 (0.04-0.60 mg/kg s.c.) did not, by itself, significantly affect male rat sexual behavior. Taken together, the results suggest an inhibitory role for postsynaptic 5-HT1B receptors in the effects produced by 5-HTP on male rat ejaculatory behavior. Furthermore, 5-HTP-induced inhibition of male rat ejaculatory behavior is partially controlled by stimulation of inhibitory 5-HT1A autoreceptors, since the effects of 5-HTP were accentuated by treatment with (-)-pindolol, as well as by the more selective 5-HT1A receptor antagonist WAY-100635.  相似文献   

3.
The 5-HT1A receptor agonist, 8-OH-DPAT ((+/-)-8-dihydroxy-2-(di-n-propylamino) tetralin), (0.63 mg/kg, s.c.) elicited spontaneous tail-flicks (STFs) in rats. This response was potentiated by the selective 5-HT2C receptor agonist, RO 60-0175 ((S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine) fumarate) (0.16 mg/kg, s.c.), the action of which was abolished by the novel 5-HT2C antagonist, SB 206,553 (5 methyl-1-(3-pyridil-carbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3 -f]indole) (0.16 mg/kg, s.c.). These data show that 5-HT1A receptor-mediated STFs in rats are facilitated by activation of 5-HT2C receptors supporting the existence of functional interactions between these sites.  相似文献   

4.
1. Ejaculatory problems and anorgasmia are well-known side-effects of the SSRI antidepressants, and a pharmacologically induced increase in serotonergic neurotransmission inhibits ejaculatory behaviour in the rat. In the present study the role of 5-HT1A and 5-HT1B receptors in the mediation of male rat ejaculatory behaviour was examined by use of selective agonists and antagonists acting at these 5-HT receptor subtypes. 2. The 5-HT1A receptor agonist 8-OH-DPAT (0.25-4.00 micromol kg(-1) s.c.) produced an expected facilitation of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the new selective 5-HT1A receptor antagonist (R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5 -carboxamide hydrogen (2R,3R) tartrate monohydrate (NAD-299) (1.0 micromol kg(-1) s.c.). NAD-299 by itself (0.75-3.00 micromol kg(-1) s.c.) did not affect the male rat ejaculatory behaviour. 3. The 5-HT1B receptor agonist anpirtoline (0.25-4.00 micromol kg(-1) s.c.) produced a dose-dependent inhibition of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the 5-HT1B receptor antagonist isamoltane (16 micromol kg(-1) s.c.) as well as by the new and selective antagonist (R)-(+)-2-(3-morpholinomethyl-2H-chromene-8-yl)oxymethylmorphol ino methansulphonate (NAS-181) (16 micromol kg(-1) s.c.). Isamoltane (1.0-16.0 micromol kg(-1) s.c.) and NAD-181 (1.0-16.0 micromol kg(-1) s.c.) had no, or weakly facilitatory effects on the male rat ejaculatory behaviour. The non-selective 5-HT1 receptor antagonist (-)-pindolol (8 micromol kg(-1) s.c.), did not antagonize the inhibition produced by anpirtoline. 4. The present results demonstrate opposite effects, facilitation and inhibition, of male rat ejaculatory behaviour by stimulation of 5-HT1A and 5-HT1B receptors, respectively, suggesting that the SSRI-induced inhibition of male ejaculatory dysfunction is due to 5-HT1B receptor stimulation.  相似文献   

5.
Systemic administration of the 5-HT1A receptor agonist 8-OH-2-(di-n-propylamino)-tetralin (8-OH-DPAT; 0.3 mg/kg, s.c.) was used to explore the effects of activation of 5-HT1A receptors on expression of mRNA coding for 5-HT1A receptor, tryptophan hydroxylase (TPH) and galanin in the ascending raphe nuclei. 8-OH-DPAT increased the hybridization signal of the 5-HT1A receptor by 105% in the dorsal raphe nucleus (B7) 30 min after the injection. No effects were seen at the later time points (2-8 h). In the median raphe nucleus (B8) and the B9 cell group in the medial lemniscus, 8-OH-DPAT induced a marked decrease in labeling 30 min after injection. At 8 h following 8-OH-DPAT injection, the effect had shifted to an increase in 5-HT1A receptor labeling by 68% in the B8 area. Importantly 8-OH-DPAT had no significant effects on the expression of mRNA coding for TPH and galanin. The results suggest an important and differential mechanism for the regulation of 5-HT1A receptor mRNA levels in the dorsal and median raphe nuclei. This regulation may be of importance for the differential control of the activity of the ascending 5-HT neurons, and hence for mood regulation. The results also indicate a dissociation between the effects mediated by 5-HT1A receptor functions and those regulating the coexisting peptide galanin in the dorsal raphe.  相似文献   

6.
Pre-exposure to 5-hydroxytryptamine (5-HT) receptor agonists in conditioned taste aversion experiments was used to characterize the stimulus properties of fluoxetine. The taste aversion induced by fluoxetine (10 mg/kg) was completely prevented when mice were pre-exposed to fluoxetine or when they were pre-exposed to the preferential 5-HT1C receptor agonist MK 212. Pre-exposure to MK 212 also prevented the conditioned taste aversion induced by another serotonin uptake inhibitor, paroxetine. A partial attenuation of fluoxetine-induced conditioned taste aversion was seen after pre-exposure to a high dose of the 5-HT1A receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 1 mg/kg), but not to lower doses. No familiarization for the fluoxetine stimulus was obtained by pre-exposure to treatments with the mixed 5-HT1C/2 receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI). With the reversed sequence, pre-exposure to fluoxetine prevented the conditioned taste aversion induced by MK 212 or 8-OH-DPAT and reduced that induced by DOI. It is concluded that the acute stimulus properties of fluoxetine mostly resemble those of a 5-HT1C receptor agonist. This supports the suggestion that the 5-HT1C receptor can play an important role in the therapeutic effect of 5-HT reuptake inhibitors.  相似文献   

7.
1. Selective 5-hydroxytryptamine (5-HT; serotonin) reuptake inhibitors (SSRIs) cause a greater increase in extracellular 5-HT in the forebrain when the somatodendritic 5-HT1A autoreceptor is blocked. Here, we investigated whether blockade of the terminal 5-HT1B autoreceptor influences a selective 5-HT reuptake inhibitor in the same way, and whether there is an additional effect of blocking both the 5-HT1A and 5-HT1B autoreceptors. 2. Extracellular 5-HT was measured in frontal cortex of the anaesthetized rat by use of brain microdialysis. In vivo extracellular recordings of 5-HT neuronal activity in the dorsal raphe nucleus (DRN) were also carried out. 3. The selective 5-HT reuptake inhibitor, paroxetine (0.8 mg kg-1, i.v.), increased extracellular 5-HT about 2 fold in rats pretreated with the 5-HT1A receptor antagonist, WAY100635. When administered alone neither paroxetine (0.8 mg kg-1, i.v.) nor WAY100635 (0.1 mg kg-1, i.v.) altered extracellular 5-HT levels. 4. Paroxetine (0.8 mg kg-1, i.v.) did not increase 5-HT in rats pretreated with the 5-HT1B/D receptor antagonist, GR127935 (1 mg kg-1, i.v.). GR127935 (1 and 5 mg kg-1, i.v.) had no effect on extracellular 5-HT when administered alone. 5. Interestingly, paroxetine (0.8 mg kg-1, i.v.) caused the greatest increase in 5-HT (up to 5 fold) when GR127935 (1 or 5 mg kg-1, i.v.) was administered in combination with WAY100635 (0.1 mg kg-1, i.v.). Administration of GR127935 (5 mg kg-1, i.v.) plus WAY100635 (0.1 mg kg-1, i.v.) without paroxetine, had no effect on extracellular 5-HT in the frontal cortex. 6. Despite the lack of effect of GR127935 on 5-HT under basal conditions, when 5-HT output was elevated about 3 fold (by adding 1 microM paroxetine to the perfusion medium), the drug caused a dose-related (1 and 5 mg kg-1, i.v.) increase in 5-HT. 7. By itself, GR127935 slightly but significantly decreased 5-HT cell firing in the DRN at higher doses (2.0-5.0 mg kg-1, i.v.), but did not prevent the inhibition of 5-HT cell firing induced by paroxetine. 8. In summary, our results suggest that selective 5-HT reuptake inhibitors may cause a large increase in 5-HT in the frontal cortex when 5-HT autoreceptors on both the somatodendrites (5-HT1A) and nerve terminals (5-HT1B) are blocked. This increase is greater than when either set of autoreceptors are blocked separately. The failure of a 5-HT1B receptor antagonist alone to enhance the effect of the selective 5-HT reuptake inhibitor in our experiments may be related to a lack of tone on the terminal 5-HT1B autoreceptor due to a continued inhibition of 5-HT cell firing. These results are discussed in relation to the use of 5-HT autoreceptor antagonists to augment the antidepressant effect of selective 5-HT reuptake inhibitors.  相似文献   

8.
Mature (3-4 months) and aged (18-19 months) Sprague-Dawley (SD) rats were treated with 5-HT receptor agonists and drug-induced behaviours monitored. The 5-HT2/1C agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), induced wet dog shakes and back muscle contractions which were significantly increased in aged, compared to mature, rats, suggesting an age-related enhancement of 5-HT2 receptor function. In contrast, the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) induced forepaw treading, flat body posture, hypothermia and hyperactivity which were not significantly different in aged compared to mature rats. Levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the hippocampus and frontal cortex were measured using high performance liquid chromatography with electrochemical detection. There were no age-related changes in hippocampal 5-HT or 5-HIAA. However both 5-HT and 5-HIAA were increased in the frontal cortex of aged SD rats. 8-OH-DPAT reduced 5-HIAA in both regions examined in mature rats, an effect which was attenuated in the aged rats, suggesting an age-related reduction in presynaptic 5-HT1A receptor function. DOI did not induce any changes in 5-HT or 5-HIAA in either of the regions examined. Radioligand binding studies with [3H] ketanserin showed there to be no significant age-related changes in cortical 5-HT2 receptor density or affinity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Single treatment with the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and alnespirone (S-20499) reduces the extracellular 5-HT concentration (5-HText) in the rat midbrain and forebrain. Given the therapeutic potential of selective 5-HT1A agonists in the treatment of affective disorders, we have examined the changes in 5-HT1A receptors induced by 2-week minipump administration of alnespirone (0.3 and 3 mg/kg/day) and 8-OH-DPAT (0.1 and 0.3 mg/kg/day). The treatment with alnespirone did not modify baseline 5-HText but significantly attenuated the ability of 0.3 mg/kg s.c. alnespirone to reduce 5-HText in the dorsal raphe nucleus (DRN) and frontal cortex. In contrast, the ability of 8-OH-DPAT (0.025 and 0.1 mg/kg s.c.) to reduce 5-HText in both areas was unchanged by 8-OH-DPAT pretreatment. Autoradiographic analysis revealed a significant reduction of [3H]8-OH-DPAT and [3H]WAY-100635 [3H-labeled N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexa necarboxamide x 3HCl] binding to somatodendritic 5-HT1A receptors (but not to postsynaptic 5-HT1A receptors) of rats pretreated with alnespirone but not with 8-OH-DPAT. In situ hybridization analysis revealed no change of the density of the mRNA encoding the 5-HT1A receptors in the DRN after either treatment. These data indicate that continuous treatment for 2 weeks with alnespirone, but not with 8-OH-DPAT, causes a functional desensitization of somatodendritic 5-HT1A receptors controlling 5-HT release in the DRN and frontal cortex.  相似文献   

10.
The present studies have examined whether the neuropeptide galanin can modulate brain serotoninergic (5-HT) neurotransmission in vivo and, particularly, 5-HT1A receptor-mediated transmission. For that purpose, we studied the ability of galanin (given bilaterally into the lateral ventricle, i.c.v.) to modify the impairment of passive avoidance retention induced by the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propyloamino)tetralin (8-OH-DPAT) when injected prior to training. This impairment appears to be mainly related to activation of 5-HT1A receptors in the CNS. Galanin dose-dependently (significant at 3.0 nmol/rat) attenuated the passive avoidance impairment (examined 24 h after training) induced by the 0.2 mg/kg dose of 8-OH-DPAT. This 8-OH-DPAT dose produced signs of the 5-HT syndrome indicating a postsynaptic 5-HT1A receptor activation. Furthermore, both the impairment of passive avoidance and the 5-HT syndrome were completely blocked by the 5-HT1A receptor antagonist WAY 100635 (0.1 mg/kg). Galanin (0.3 or 3.0 nmol) or WAY 100635 (0.1 mg/kg) failed by themselves to affect passive avoidance retention. 8-OH-DPAT given at a low dose 0.03 mg/kg, which presumably stimulates somatodendritic 5-HT1A autoreceptors in vivo, did not alter passive avoidance retention or induce any visually detectable signs of the 5-HT syndrome. Galanin (0.3 or 3.0 nmol) given i.c.v. in combination with the 0.03 mg/kg dose of 8-OH-DPAT, did not modify passive avoidance. The immunohistochemical study of the distribution of i.c.v. administered galanin (10 min after infusion) showed a strong diffuse labelling in the periventricular zone (100-200 microm) of the lateral ventricle. Furthermore, in the dorsal and ventral hippocampus galanin-immunoreactive nerve cells appeared both in the dentate gyrus and the CA1, CA2 and CA3 layers of the hippocampus. In the septum only endogenous fibres could be seen while in the caudal amygdala also galanin-immunoreactive nerve cells were visualized far away from the labelled periventricular zone. At the level of the dorsal raphe nucleus a thin periventricular zone of galanin immunoreactivity was seen but no labelling of cells. These results suggest that galanin can modulate postsynaptic 5-HT1A receptor transmission in vivo in discrete cell populations in forebrain regions such as the dorsal and ventral hippocampus and parts of the amygdala. The indication that galanin administered intracerebroventrically may be taken up in certain populations of nerve terminals in the periventricular zone for retrograde transport suggests that this peptide may also affect intracellular events.  相似文献   

11.
The aim of the present study was to characterize in vivo the 5-HT receptor subtypes which mediate the effect of microiontophoretic applied 5-HT in the guinea pig head of caudate nucleus and orbitofrontal cortex. 5-HT and the preferential 5-HT2A receptor agonist DOI and the preferential 5-HT2C receptor agonist mCPP, suppressed the quisqualate (QUIS)-induced activation of neurons in both structures. The inhibitory effect of DOI and mCPP was not prevented by acute intravenous administration of the 5-HT1/2 receptor antagonist metergoline (2 mg/kg) and the 5-HT2A/2C receptor antagonist ritanserin (2 mg/kg) in the two regions nor by the selective 5-HT2A receptor antagonist MDL100907 (1 mg/kg) in the head of caudate nucleus. However, the inhibitory effect of DOI, but not that of mCPP, was antagonized by a 4-day treatment with metergoline and ritanserin (2 mg/kg/day; using minipumps implanted subcutaneously) in head of caudate nucleus, but not in orbitofrontal cortex. Microiontophoretic ejection of the 5-HT1A/7 receptor agonist 8-OH-DPAT and of the 5-HT1A receptor antagonist WAY100635 both suppressed the spontaneous and QUIS-activated firing activity of orbitofrontal cortex neurons. At current which did not affect the basal discharge activity of the neuron recorded, microiontophoretic application of WAY100635 and BMY7378 failed to prevent the inhibitory effect of 8-OH-DPAT. The inhibitory effect of gepirone, which is a 5-HT1A receptor agonist but devoid of affinity for 5-HT7 receptors, was also not antagonized by WAY100635. Altogether, these results suggest the presence of atypical 5-HT1A receptors in the orbitofrontal cortex. The present results also indicate that the suppressant effect of DOI may be mediated by 5-HT2A receptors in head of caudate nucleus and atypical 5-HT2 receptors in orbitofrontal cortex.  相似文献   

12.
Stimulation of [35S]GTPgammaS binding by serotonin (5-hydroxytryptamine, 5-HT) receptor ligands was characterized in rat hippocampal membranes. The optimized assay contained 30-50 microg protein, 300 microM GDP and 0.1 nM [35S]GTPgammaS, incubated at 37 degrees C for 20 min. At 10 microM, the 5-HT1A receptor agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin [R(+)-8-OH-DPAT] stimulated GTPgammaS binding from 27.1 +/- 2.5 to 45.7 +/- 4.2 fmol/mg protein. Increasing the protein concentration did not affect the absolute difference between basal and maximal GTPgammaS binding nor the EC50, but decreased the percent stimulation. The non-selective agonists serotonin and 5-carboxamidotryptamine were 30-35% more efficacious, whereas the partial agonists buspirone and S(-)-8-hydroxy-2-(di-n-propylamino)tetralin stimulated GTPgammaS binding by 19 +/- 1 and 43 +/- 3%, respectively, compared to R(+)-8-OH-DPAT. Neither the 5-HT2 receptor agonist [(+/-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl] (DOI) nor the 5-HT1A receptor antagonists WAY 100,635 (n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride) and spiperone altered basal GTPgammaS binding. WAY 100,635 abolished the effect of R(+)-8-OH-DPAT, but only reduced the effect of serotonin by 88 +/- 3%. Finally, methiothepin antagonized R(+)-8-OH-DPAT-stimulated GTPgammaS binding and reduced basal GTPgammaS binding by itself. The reduction was not affected by WAY 100,635. We have characterized a method to assess functional activity at 5-HT1A receptors in rat hippocampal membranes by measuring agonist-induced [35S]GTPgammaS binding.  相似文献   

13.
Rats were trained to discriminate 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.1 mg/kg i.p.) or 5-methoxy-N,N-dimethyltryptamine (5-OMe-DMT, 1.25 mg/kg i.p.), a selective and nonselective 5-hydroxytryptamine1A (5-HT, serotonin) receptor agonist, respectively, from saline in a two-lever procedure. The selective 5-HT1A receptor agonist ipsapirone substituted completely for 8-OH-DPAT (ED50, 1.52 mg/kg) and 5-OMe-DMT substituted partially for 8-OH-DPAT, whereas 8-OH-DPAT (ED50, 0.07 mg/kg) and ipsapirone (ED50, 4.15 mg/kg) substituted completely for 5-OMe-DMT. These results suggest that the discriminative stimulus properties of both 8-OH-DPAT and 5-OMe-DMT are 5-HT1A receptor mediated, although 5-OMe-DMT may involve an additional interaction with other 5-HT receptor subtypes. 5-OMe-DMT substituted for 8-OH-DPAT after application in the lateral ventricle (ED50, 3.0 micrograms/rat) and the dorsal raphe nucleus (DRN, 1.1 micrograms/rat). After application in the DRN (ED50 range, 1.4-5.0 micrograms/rat) and the median raphe nucleus (2.3 micrograms/rat), and after bilateral application into the CA-4 region of the dorsal hippocampus (4.1 micrograms/rat), 8-OH-DPAT also produced responding on the 8-OH-DPAT lever. Ipsapirone also substituted for 8-OH-DPAT after application into the DRN and the hippocampus (ED50S, 38 and 62 micrograms/rat, respectively). The 5-HT1A mixed agonist-antagonist (1-(2-methoxyphenyl) 4-[4-(2-pthalimido)butyl]piperazine, i.p. NAN-190) attenuated the discriminative stimulus effects of 8-OH-DPAT injected i.p. (0.1 mg/kg), into the DRN (10 micrograms) or into the hippocampus (2 x 10 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Serotonin (5-hydroxytryptamine, 5-HT) synthesis was determined in vivo by measuring the accumulation of 5-hydroxytryptophan (5-HTP) in rat frontal cortex after inhibition of aromatic amino acid decarboxylase by administrative of m-hydroxybenzylhydrazine (NSD 1015) (100 mg/kg, i.p.). The selective 5-HT reuptake inhibitor, citalopram, the 5-HT1A agonists, (+/-) 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), ipsapirone, gepirone and the 5-HT1A/B agonist, 7-trifluoromethyl-4(4-methyl-1-piperazinyl-pyrolo[1,2-a]-quinox ali ne (CGS 12066B), the 5-HT1A/B ligands and beta-adrenoceptor antagonists, (+/-) pindolol and (+/-) alprenolol, and the non-selective 5-HT ligands, m-chlorophenylpiperazine (mCPP) and metergoline, all inhibited the synthesis of 5-HT. The 5-HT1A/5-HT2 antagonist, spiperone, alone, had no effect on basal 5-HT synthesis, however it attenuated the effect of 8-OH-DPAT by 56% and CGS 12066B by 39% but only barely that of citalopram by 17%. The selective 5-HT1A antagonist, WAY 100635, which did not modify by itself 5-HT synthesis, had no effect on citalopram-induced reduction of 5-HT synthesis. Neither the 5-HT2 agonist, (+/-)1-(2,5-dimethoxy-4-indophenyl)-2-aminopropane (DOI) nor the 5-HT2 antagonist, ritanserin, had any effect on the synthesis of 5-HT. In addition, ritanserin did not modify the inhibitory effect of citalopram. Methiothepin was the only compound to increase 5-HT synthesis. These results suggest that the effect of citalopram on the synthesis of 5-HT is not mediated by 5-HT1A or 5-HT2 receptors and that other receptors may be involved.  相似文献   

15.
1. The effects of the 5-HT2A/2C agonist DOB, the selective 5-HT1A agonist NDO 008 (3-dipropylamino-5-hydroxychroman), and the two enantiomers of the selective 5-HT1A agonist 8-OH-DPAT (R(+)-8-OH-DPAT and S(-)-8-OH-DPAT) were studied in a step-through passive avoidance (PA) test in the male rat. 2. The 5-HT1A agonists injected prior to training (conditioning) produced a dose-dependent impairment of PA retention when examined 24 h later. R(+)-8-OH-DPAT was four times more effective than S(-)-8-OH-DPAT to cause an impairment of PA retention. Both NDO 008 and the two enantiomers of 8-OH-DPAT induced the serotonin syndrome at the dose range that produced inhibition of the PA response, thus, indicating activation of postsynaptic 5-HT1A receptors. 3. Neither NDO 008 nor R(+)-8-OH-DPAT induced head-twitches, a behavioural response attributed to stimulation of postsynaptic 5-HT2A receptors. In contrast, DOB induced head-twitches at the 0.01 mg kg(-1) dose while a 200 times higher dose was required to produce a significant impairment of PA retention. 4. The impairment of PA retention induced by both NDO 008 and R(+)-8-OH-DPAT was fully blocked by the active S(+)- enantiomer of the selective 5-HT1A antagonist WAY 100135 and the mixed 5-HT1A/beta-adrenoceptor antagonist L(-)-alprenolol. In contrast, the mixed 5-HT2A/2C antagonists ketanserin and pirenperone were found to be ineffective. Moreover, the beta2-adrenoceptor antagonist ICI 118551, the beta-antagonist metoprolol as well as the mixed beta-adrenoceptor blocker D(+)-alprenolol all failed to modify the deficit of PA retention by NDO 008 and R(+)-8-OH-DPAT. None of the 5-HT1A or 5-HT2A/2C receptor antagonists tested or the beta-blockers altered PA retention by themselves. 5. A 3 day pretreatment procedure (200+100+100 mg kg(-1)) with the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA) did not alter PA retention and did not prevent the inhibitory action of the 5-HT1A agonists, indicating that their effects on PA do not depend on endogenous 5-HT. 6. The effects of NDO 008 on PA were also studied using a state-dependent learning paradigm. NDO 008 was found to produce a disruption of PA when given either prior to training or retention or both prior to training and retention but it failed to affect PA retention when given immediately after training. .7 These findings indicate that the deficit of passive avoidance retention induced by the 5-HT1A agonists is mainly a result of stimulation of postsynaptic 5-HT1A receptors but not 5-HT2A receptors. The 5-HT1A receptor stimulation appears to interfere with learning processes operating at both acquisition and retrieval.  相似文献   

16.
As a means of characterizing the role of 5-hydroxytryptamine (5-HT1A) receptors in learning, a full 5-HT1A receptor agonist, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT), was administered both alone and in combination with two partial agonists (buspirone and 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl] piperazine hydrobromide (NAN-190)) and a 5-HT1A receptor antagonist (p-MPPI) to rats responding under a multiple schedule of repeated acquisition and performance of response sequences. In addition, the effects of another 5-HT1A receptor agonist, (LY228729), were also studied under this same procedure. When administered alone, both 8-OH-DPAT (0.1-3. 2 mg/kg) and LY228729 (0.32-3.2 mg/kg) dose dependently decreased overall response rate and increased the percentage of errors in the acquisition and performance components. At the doses of each drug tested, both buspirone (0.32 or 1 mg/kg) and NAN-190 (1 or 3.2 mg/kg) also decreased overall response rate and increased the percentage of errors. However, the effects of these drugs differed across behavioral components and dependent measures. The effects of buspirone and NAN-190 on rate and accuracy were also different when they were administered in combination with 8-OH-DPAT. In contrast, p-MPPI (3.2 or 10 mg/kg) had little or no effect when administered alone and antagonized the effects of 8-OH-DPAT; shifting the dose-effect curves for both response rate and the percentage of errors in both components to the right. Taken together, these results indicate that complex behaviors in rats are sensitive to disruption by drugs with both full and partial 5-HT1A receptor agonist properties, and that the effects of partial 5-HT1A receptor agonists on learning may be different depending on their efficacy at pre- and postsynaptic 5-HT1A receptors.  相似文献   

17.
One of the critical mechanisms by which alcohol heightens aggression involves forebrain serotonin (5-HT) systems, possibly via actions on 5-HT1A receptors. The present experiments tested the hypothesis that activating 5-HT1A receptors by selective agonists will block the aggression-heightening effects of ethanol. Initially, the selective antagonist WAY 100635 was used to assess whether or not the changes in aggressive behavior after treatment with 8-OH-DPAT and flesinoxan result from action at the 5-HT1A receptors. Resident male CFW mice engaged in aggressive behavior (i.e. attack bites, sideways threats, tail rattle) during 5-min confrontations with a group-housed intruder male. Quantitative analysis of the behavioral repertoire revealed systematic reductions in all salient elements of aggressive behavior after treatment with 8-OH-DPAT (0.1-0.3 mg/kg, i.p.) or flesinoxan (0.1-1.0 mg/kg, i.p.). The 5-HT1A agonists also reduced motor activities such as walking, rearing and grooming, although to a lesser degree. Pretreatment with the antagonist WAY 100635 (0.1 mg/kg, i.p.) shifted the agonist dose-effect curves for behavioral effects to the right. In a further experiment, oral ethanol (1.0 g/kg, p.o.) increased the frequency of attacks in excess of 2 SD from their mean vehicle level of attacks in 19 out of 76 resident mice. Low doses of 8-OH-DPAT (0.03-0.3 mg/kg) and flesinoxan (0.1, 0.3, 0.6 mg/kg), given before the ethanol treatment, attenuated the alcohol-heightened aggression in a dose-dependent fashion. By contrast, these low 5-HT1A agonist doses affected motor activity in ethanol-treated resident mice to a lesser degree, suggesting behavioral specificity of these anti-aggressive effects. The current results support the hypothesized significant role of 5-HT1A receptors in the aggression-heightening effects of alcohol. If these effects are in fact due to action at somatodendritic 5-HT1A autoreceptors, then the anti-aggressive effects would be associated with decreased 5-HT neurotransmission.  相似文献   

18.
The role of 5-HT1A receptors in the antinociceptive action of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) was investigated by using the shock titration test in rats. A subcutaneous injection of 300 micrograms/kg 8-OH-DPAT significantly raised the threshold for flinching, jumping and vocalization whereas 100 micrograms/kg only inhibited the flinch response. l-Propranolol and (+)-[N-tert-butyl-3-4-(2-methoxyphenyl)piperazin-1-yl-2-phenyl propanamide dihydrochloride], (+)-WAY100135, two antagonists at 5-HT1A receptors at 10 mg/kg s.c. antagonized the effect of 300 micrograms/kg 8-OH-DPAT on all measures. The effect of 300 micrograms/kg 8-OH-DPAT on the three measures was unmodified in rats which had received 150 micrograms 5,7-dihydroxytryptamine intracerebroventricularly 10 days before testing. The results suggest that 8-OH-DPAT inhibits nociceptive responses by stimulating postsynaptic 5-HT1A receptors.  相似文献   

19.
The effects of the administration of different 5-HT4 receptor antagonists (SDZ 205557, GR 125487) and 5-HT4 receptor agonists (BIMU 1, BIMU 8) on memory processes were evaluated in the mouse passive avoidance test. The administration of SDZ 205557 (10 mg kg-1 i.p.) and GR 125487 (10 mg kg-1 i.p.) immediately after termination of the training session produced an amnesic effect. BIMU 1 (20 mg kg-1 i.p.) and BIMU 8 (30 mg kg-1 i.p.), administered 20 min before the training session, prevented the 5-HT4 receptor antagonist-induced amnesia. In the same experimental conditions BIMU 1 (10 mg kg-1 i.p.; 25 microgram/mouse intracerebroventricularly) and BIMU 8 (30 mg kg-1 i.p.; 30 microgram per mouse intracerebroventricularly) prevented scopolamine (1 mg kg-1 i.p.) and dicyclomine (2 mg kg-1 i.p.) amnesia and, at the dose of 10 and 30 mg kg-1 i.p. respectively, prevented amnesia induced by exposure to a hypoxic environment. At the highest effective doses, none of the drugs impaired motor coordination, as revealed by the rota rod test, or modified spontaneous motility and inspection activity, as revealed by the hole board and Animex tests. The 5-HT3 antagonist ondansetron (0.1-1 mg kg-1 i.p.) was unable to prevent scopolamine-, 5-HT4 antagonist- and hypoxia-induced amnesia. These results suggest that the modulation of 5-HT4 receptors plays an important role in the regulation of memory processes. On these bases, the 5-HT4 receptor agonists could be useful in the treatment of cognitive deficits although 5-HT4 receptor antagonists may represent pharmacological tools for investigation of new potential antiamnesic drugs.  相似文献   

20.
1. The behavioural effects of the 5-HT1B receptor agonists, RU 24969 and CGS 12066B, have been investigated in C57/B1/6 mice. 2. RU 24969 (1-30 mg kg-1) produced intense and prolonged hyperlocomotion and other behavioural changes. 3. CGS 12066B caused similar effects, but they were much less pronounced, inconsistent and transient irrespective of whether this drug was given i.p. (1-15 mg kg-1) or i.c.v. (0.2-40 micrograms). However, CGS 12066B (7.5 and 15 mg kg-1) caused a dose-related inhibition of RU 24969 (7.5 mg kg-1)-induced hyperlocomotion indicating that the former is a 5-HT1B partial agonist. 4. RU 24969 (7.5 mg kg-1 i.p.)-induced hyperlocomotion was inhibited by the (-)-, but not (+)-isomers of pindolol (4 mg kg-1) and propranolol (20 mg kg-1) but not by metoprolol (10 mg kg-1) or ICI 118,551 (5 mg kg-1), consistent with an involvement of 5-HT1A or 5-HT1B receptors. 5. The response was not altered by the selective 5-HT1A receptor antagonist, WAY 100135 (5 mg kg-1, s.c.), the 5-HT2A/5-HT2C receptor antagonist, ritanserin (0.1 mg kg-1), the selective 5-HT3 receptor antagonist, ondansetron (1 mg kg-1) or the non-selective 5-HT receptor antagonists methysergide (3 mg kg-1) and metergoline (3 mg kg-1). 6. Although spiroxatrine (0.1 mg kg-1) and ketanserin (1 mg kg-1) inhibited RU 24969-induced hyperlocomotion, these effects were probably due to antagonism of dopamine D2 receptors and alpha 1-adrenoceptors respectively. 7. Taken together, these results indicate that RU 24969-induced hyperlocomotion results specifically from activation of central 5-HTIB receptors.8. Lesioning of 5-HT neurones with 5,7-dihydroxytryptamine (75 microg, i.c.v.) or depletion with pchlorophenylalanine(200 mg kg-1, i.p. for 14 days) had no effect on RU 24969-induced hyperlocomotiondemonstrating that the 5-HTIB receptors involved are postsynaptic and that they do not show super sensitivity.9. The involvement of other monoamine neurotransmitter systems in RU 24969-induced hyperlocomotionwas also examined. The response was inhibited by the al-adrenoceptor antagonist, prazosin(1 mg kg-1), the dopamine DI receptor antagonist, SCH 23390 (0.05 mg kg-1) and the dopamine D2 receptor antagonist, BRL 34778 (0.03 mg kg-1), but not by the M2-adrenoceptor antagonist, idazoxan(1 mg kg-1). Lesioning noradrenergic neurones with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine(100 mg kg-1) markedly attenuated this behaviour. These results show that the hyperlocomotion is expressed via noradrenergic and dopaminergic neurones acting on alpha 1-adrenoceptors, DI and D2 receptors.10. RU 24969 decreased brain concentrations of 5-hydroxyindoleacetic acid whilst simultaneously increasing 5-HT, consistent with the reduction of 5-HT neuronal activity by activation of 5-HTlA and 5-HTIB autoreceptors. RU 24969 increased brain 3-methoxy-4-hydroxyphenylglycol, but not noradrenaline, concentrations which supports the involvement of noradrenergic neurones in the expression of hyperlocomotion. RU 24969 did not alter dopamine, dihydroxyphenylacetic acid or homovanillic acid concentrations in the nucleus accumbens suggesting that the dopaminergic neurones terminating there are not directly involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号