首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
氰化尾渣高温氯化回收金银试验研究   总被引:1,自引:1,他引:1  
常耀超  徐晓辉  王云 《矿冶》2015,24(3):42-44
氰化尾渣含有Au、Ag、Cu等有价金属,综合回收价值大。考察了造球影响因素以及焙烧温度、Ca Cl2添加量、焙烧时间等因素对金属挥发率影响。试验结果表明,氰化尾渣经润磨后造球30 min、含水26%时湿球强度可达到10次以上/0.5 m落下。在1100℃温度、7%Ca Cl2添加量、焙烧1 h条件下,Au、Ag、Cu挥发率分别为98%、65%、90%。  相似文献   

2.
从焙烧氰化尾渣中回收金、银   总被引:4,自引:0,他引:4  
对于含铜、砷金精矿,国内外黄金冶炼厂通常采用焙烧氰化法提取金、银,但所产的氰渣中金、银的含量较高,其品位分别为Au1.5~2.5g/t、Ag150~250g/t.如何从焙烧氰化尾渣中回收Au、Ag,合理地利用矿产资源,提高企业的经济效益,是目前黄金选冶工艺中急待解决的难题.为此,我们以山东招远黄金冶炼厂焙烧氰化尾渣为原料进行了试验研究.结果表明,采用添加剂进行尾渣焙烧-氰化浸出的工艺,金、银的回收率分别达到61.54%和76.81%.该方法投资少、成本低、简单易行,具有较好的经济效益和社会效益,值得推广应用.  相似文献   

3.
对某氰化尾渣综合回收利用进行了试验研究。试验结果表明,采用焙烧-磁选工艺流程,最终可获得产率53.78%,品位55.46%,回收率76.73%的铁精矿,可以作为炼铁的低品位原料或配料使用。  相似文献   

4.
氰化尾渣氯化挥发-还原焙烧一步法回收金铁   总被引:1,自引:0,他引:1  
李正要  王维维  乐坤 《金属矿山》2015,44(10):173-177
为探索氯化挥发-还原焙烧一步法回收氰化尾渣中金、铁的可行性,以河南某黄金冶炼企业金品位为4.57 g/t、铁品位为42.95%的氰化尾渣为研究对象,氯化钙和氯化钠为氯化剂(按w(Ca Cl2)∶w(Na Cl)=4∶1混合添加),烟煤为还原剂,进行了氯化挥发-还原焙烧试验。结果表明:在氯化剂用量为10%、烟煤用量为18%、焙烧温度为1 000℃、焙烧时间为80 min、焙烧产品磨矿细度为-0.043 mm占75%、磁场强度为106 k A/m时,可以获得金挥发率为85.19%、精矿铁品位为74.16%、回收率为87.75%的指标。试验结果为从氰化尾渣中回收金、铁提供了一种新途径。  相似文献   

5.
用高温氯化挥发法对氰化尾渣进行回收金试验研究。结果表明,在氯化钙添加量5%,氯化焙烧时间1h,焙烧温度1100℃条件下,金挥发率达90.77%。  相似文献   

6.
梯级分离回收焙烧氰化尾渣中的有价金属,对提高资源综合利用率、消解氰化尾渣危废对冶金行业持续发展具有重要意义。本文以焙烧氰化尾渣为原料,采用一级酸浸浸取金铜锌、二级还原焙烧—磁选回收含金铁精矿、三级浮选回收金的梯级分离回收工艺方法,焙烧氰化尾渣中的金、铜、锌、铁的综合回收率分别达到63.07%、80.50%、70.31%、80.64%。该技术方法能够有效解决焙烧氰化尾渣中金、铜、锌、铁的综合回收技术难题,实现了焙烧氰化尾渣的高值化、资源化利用,同时将焙烧氰化危废转化为二次高价值资源,解决了焙烧氰化危废无害化处置的冶金行业共性技术难题。  相似文献   

7.
某氰化尾渣煤基还原焙烧-磁选试验   总被引:1,自引:1,他引:1  
在对某氰化尾渣进行化学分析和X射线衍射分析的基础上,进行了煤基还原焙烧-磁选试验研究,着重探讨了还原煤的种类和添加量、焙烧温度、焙烧时间对试验结果的影响。试验结果表明,用烟煤为还原剂,不仅用量比褐煤少,而且试验指标更好;在烟煤添加量为18%、焙烧温度为750 ℃、焙烧时间为60 min、焙烧产品磨矿细度为-0.074 mm占90%的情况下,经1粗1精弱磁选(磁场强度为149.6 kA/m),获得了铁品位为60%、回收率为70.80%的铁精矿。  相似文献   

8.
贵州某金矿氰化尾渣氯化挥发回收金试验   总被引:2,自引:0,他引:2  
研究贵州某含砷金矿氰化尾渣高温氯化挥发回收金的过程。结果表明,在氯化钙添加量5%,氯化焙烧时间1 h,焙烧温度1100℃条件下,氰化尾渣含金量降至0.48g/t,金挥发率达90.77%。  相似文献   

9.
采用一步氯化挥发法处理氰化提金后的尾渣,考察了工艺配方、焙烧温度、焙烧时间及气氛等因素对脱铜、脱砷效果的影响.结果表明:采用一步氯化挥发法脱除铜砷的效果良好,适当配比制球,在焙烧温度1160℃的条件下,尾渣中的铜砷脱除率达到90%以上,并可通过冷凝收尘回收铅、锌、银等有价金属.烧渣中铁的品位达到64%以上,可作为优良的炼铁原料.  相似文献   

10.
以氰化尾渣原料,采用熔融氯化工艺提金,研究了氯化钙添加量、氯化时间、氯化钙的添加方式等因素对氯化提金的影响,并对如何降低熔融氯化温度进行了探索。结果表明,CaCl_2添加量为7%,分五次添加,熔融氯化时间为15min。氧化钙添加量为5%,熔融氯化温度为1 450℃。金挥发率为95.69%,渣含金为0.54g/t;银挥发率为77.06%,渣含银为4.20g/t。  相似文献   

11.
湿法炼锌企业每年产生大量锌浸出渣,直接渣场堆放会导致严重的环境问题和矿产资源浪费。开展浸出渣中银经济高效回收工艺研究对最大程度提高资源利用率具有重大意义。某锌浸出渣中有价金属银嵌布粒度细、银赋存形态复杂且水溶锌含量高。为回收浸出渣中的有价金属银,降低水溶锌对含银矿物浮选的不利影响,开展水浸-分段硫化浮选回收银工艺研究。结果显示:水浸后锌浸出率达38.3%,银品位提升至205g/t,水浸-浮选试验银精矿回收率相较于直接浮选可提高8%,再通过快速浮选-两粗两精一扫的闭路浮选工艺获得银精矿1#银品位为4128.19g/t、银回收率62.17%,银精矿2#银品位为1101.56g/t、银回收率18.19%。XRD、EPMA及EDS分析结果表明,银精矿中银主要分布于石膏、硫酸铅、铁酸锌及闪锌矿等矿物中。  相似文献   

12.
鉴于国家环保政策的调整,环保部等三部委已将“采用氰化物进行选矿过程中产生的氰化尾渣”定为危险废物,而即将执行的新环保税法将对危险废物征收1000元/吨的环境保护税,氰化废物的经济消解是未来氰化厂主要研究课题和发展方向。山东某氰化尾渣中含有一定品位的铅、锌、铜,该氰化尾渣不进行回收处理,不仅会造成资源的浪费,也会对环境造成污染。如果对这部分多金属进行回收,会产生良好的经济效益。从氰化尾渣中回收有价金属元素不同于从原矿中回收有价金属元素,回收其中的有价元素较困难。为解决此问题,根据该氰化尾渣的性质,采取代表性的尾渣矿样,拟采取确定合理的选矿工艺回收尾矿中的有价金属,采用先浮铅锌再浮硫的优先浮选工艺流程试验,该试验流程能够取得较好的有价金属元素回收效果。结果表明,在原矿含铅2.62%,含锌0.98%,含铜0.19%的条件下,采用一粗两精两扫的浮选工艺流程选择铅锌,一粗两精两扫选选硫流程,处理改氰化尾渣,获得了含铅品位19.77%,回收率21.50,锌品位19.69%,回收率71.07%,铜含量1.43%的铅锌精矿,硫品位45.27%,回收率35.92%的硫精矿。新工艺流程工艺指标更优、药剂成本更低、工艺更简洁,不仅铅锌精矿中铅、锌均得到有效的回收,其中伴生硫的指标也得到了改善,为氰化尾渣中铅锌铜硫的回收提供了方案。  相似文献   

13.
新疆某金矿的浮选精矿经生物氧化,氧化渣再氰化提金后,氰化渣中金银含量仍较高。针对该氰化渣进行了重选和浮选试验,确定了碳酸钠 水玻璃作组合调整剂、硫酸铜作活化剂、异戊基黄药 丁铵黑药作组合捕收剂、RB-3作起泡剂的药剂制度,以及二次粗选、三次精选的开路流程。氰化渣金、银品位分别为7.40 g/t和24.96 g/t时,开路试验可获得精矿中金品位24.68 g/t,回收率61.30%;银品位67.21 g/t,回收率47.47%的较好指标。浮选精矿产品的X射线衍射结果表明,氰化渣中载金矿物为未氧化的白铁矿和黄铁矿,且脉石矿物的粒度极细,直接影响精矿的浮选指标。  相似文献   

14.
云南某氧化矿氰化渣经过弱磁选工艺回收磁铁矿后的尾矿,仍含有大量的褐铁矿资源,经济价值较高。然而,该尾矿铁品位较低为20.42%,粒度微细,泥化严重,其中褐铁矿中铁分布率高达94.76%,回收利用难度较大。本研究针对该氰化渣尾矿性质,采用脉动高梯度磁选一粗一精选流程,在最优分选条件下可获得产率22.35%,铁品位47.12%,铁回收率51.57%的褐铁精矿。采用脉动高梯度磁选工艺回收该氰化渣尾矿中的褐铁矿,分选成本低,处理量大,分选指标好,为回收该低品位氰化渣尾矿中微细褐铁矿提供了有效的技术解决方案。  相似文献   

15.
本试验对某微细嵌布氰化渣进行了矿石性质、金赋存状态、粒度和多元素分析,进行了浮选回收金工艺和条件实验的详细研究,最终确定采用浮选工艺,硫化矿和铁氧化矿分开浮选的工艺流程,这样有利于提高金回收率。研究结果表明采用一粗、两精、三扫、中矿精选的硫化矿、铁氧化矿分开浮选的工艺流程,获得精矿金品位31.26 g/t,回收率62.65%,相比较现场混合浮选,金精矿品位提高了约10 g/t、回收率提高了5%,对同类矿产资源的利用提供了参考依据。  相似文献   

16.
提高锌浸出渣中银浮选回收率的工艺改进   总被引:1,自引:1,他引:1  
锌冶炼过程中,提高锌浸出渣中银浮选回收率是增加企业生产效益的重要途径之一,文章针对某厂银浮选回收工艺存在的具体问题,着重从如何稳定浮选给矿性质、降低溶液含锌以及稳定浮选流量等方面进行了工艺改进研究,从工艺改进的结果来看,银的回收率提高了近10%,取得了良好的经济效益。  相似文献   

17.
氰化尾渣是黄金冶炼工业产生的危险废物,全球每年的生产量可达上亿吨。因其含有剧毒氰化物,存在环境及安全隐患,因此亟待无害化处置。本文采用氧化焙烧技术对内蒙某金矿选矿厂的氰化尾渣中总氰化物及硫氰酸盐进行同步氧化降解无害化处置。在氰化尾渣工艺矿物学研究的基础上,利用飞行时间二次质谱(TOF-SIMS)对氰化物赋存状态进行了高精度的定性分析,并开展了氰化尾渣氧化焙烧条件试验,分析了氰化尾渣中总氰化物及硫氰酸盐的热分解规律,比较了不同焙烧温度和焙烧时间对总氰化物及硫氰酸盐脱除效果的影响。试验结果表明,氰化尾渣中总氰化物含量为778.20mg/kg,硫氰酸盐含量为1229.41mg/kg。当氰化尾渣在焙烧温度500℃、焙烧时间30min、O2浓度20%、总气流量为600mL/min条件下进行氧化焙烧试验,焙烧后总氰化物含量为1.59mg/kg,去除率达到99.80%;硫氰酸盐含量低于检出限,去除率为99.99%,实现了总氰化物及硫氰酸盐同步氧化降解。对氰化尾渣气相产物进行了分析,描述了氰化尾渣在氧化焙烧过程中黄铁矿氧化反应、碳酸盐矿物分解反应,以及总氰化物及硫氰酸盐持续氧化分解反应历程。该工艺填补了当前氰化尾渣中总氰化物及硫氰酸盐同步热处理技术上的空白,在去除稳定性高的络合氰化物的同时,高效氧化分解高含量的硫氰酸盐,为氰化尾渣的深度解毒处置提供理论支撑。  相似文献   

18.
Several factors affecting the elution of Pt, Pd and Au cyanide complexes in a manner similar to the AARL process have been investigated. Temperature, the cyanide pre-treatment concentration and the ionic strength of the eluant have been found to affect Pt and Pd elution substantially and will be critical factors in the design of an elution process. An acid (HCl) pre-treatment step increased the elution percentage for all cases investigated while no PGMs were eluted by the acid. The presence of Cu did not have a negative effect on the elution of Pt, Pd or Au at strong pre-treatment (2% NaCN and 0.6% NaOH) conditions but at weak pre-treatment conditions (0% NaCN), the elution percentage of Pt and Pd were reduced by between 10% and 18% after five bed volumes when Cu was present. The presence of 100 mg/L KSCN salt added to the leach solution during the adsorption stage reduced the elution percentage for Pt and Pd by seven and 10%. Carbon loaded to equilibrium resulted in slower elution kinetics.  相似文献   

19.
研究了浸铜后渣综合回收铜、铅、银等有价金属的最佳工艺路线,试验结果表明:采用氧化焙烧与还原熔炼相结合分离出金属合金,从而获得良好的工艺技术指标,Cu、Pb、Ag、Bi、Mo的回收率分别达到97.68%、84.16%、98.79% 、98.01%、85.14%。  相似文献   

20.
氰化尾渣的综合利用   总被引:1,自引:0,他引:1  
本文研究了氰化尾渣的处理方法,提出采用“混合浮选-分离浮选”工艺,从氰化尾渣中回收铜、金、银等有价元素,获得了铜、金、银品位分别为17.21%、9.38g/t、2212.86g/t的铜精矿和硫品位为42.12%的硫精矿,为氰化尾渣的综合利用开辟了一条新途径  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号