首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new methodology for predicting the location of maximum crack extension along a surface crack front in ductile materials is presented. Three-dimensional elastic-plastic finite element analyses were used to determine the variations of a constraint parameter (αh) based on the average opening stress in the crack tip plastic zone and the J-integral distributions along the crack front for many surface crack configurations. Monotonic tension and bending loads are considered. The crack front constraint parameter is combined with the J-integral to characterize fracture, the critical fracture location being the location for which the product h is a maximum. The criterion is verified with test results from surface cracked specimens.  相似文献   

2.
Deformations far from the crack tip and plastic collapse at limit load may control the fracture of specimens fabricated from highly ductile materials. To investigate the behavior of test specimen under plastic fracture, this paper derives solutions for the limit load of the C(T) specimen based on slip-line analysis. The modified Green's solution gives the most accurate results. Analysis of test data for many types of metal materials shows that, after some initial crack extension, the specimens reach the limit load. Yet, previous investigators analyzed the resistance to crack extension in these specimens with J-R curves. The large plastic deformations and unloading of the material in the wake of crack extension violate the basic assumptions of J-integral, thus invalidating the J-R analysis. It is, therefore, necessary to perform limit load analysis in the investigation of ductile crack extension.  相似文献   

3.
Previous studies on multi-axial fracture of metals have shown that the critical J-integral at fracture may be less than the fracture toughness measured in a standard test. This gives rise to the question: what is the minimum critical J-integral and how can it be obtained? To answer this question a series of uniaxial, biaxial and triaxial tests were carried out. Conducting biaxial and triaxial tests allows the effects of stress state in the fracture of metallic materials to be investigated, particularly when the plasticity is highly constrained. The primary purpose of this paper is to report the experimental findings of the tests performed on specimens fabricated from aluminium alloy 2024. Results of finite element analyses are then used to study further the detailed stress state near the crack tip and to evaluate the intensity of the plastic deformation and relate it to the critical J-integral variation. It was found that indeed high triaxial loading, corresponding to limited plastic deformation prior to the fracture, decreases the critical J-integral even below the values obtained from the biaxial tests, which are already less than the standard uniaxial value.  相似文献   

4.
An energy dissipation rate concept is employed in conjunction with the J-integral to calculate crack growth resistance of elastic-plastic fracture. Different from Rice’s J-integral, the free energy density is employed in place of the stress working density to define an energy-momentum tensor, which yields that the slightly changed J-integral is path dependent regardless of incremental plasticity and deformational plasticity. The J-integral over the remote contour is split into the plastic influence term and the J FPZ-integral over the fracture process zone which is an appropriate estimate of the separation work of fracture. Finite element simulations are carried out to predict the plane strain mode I crack growth behavior by an embedded fracture process zone. It can be concluded that J-integral characterization is in essence a stress intensity-based fracture resistance similar to the K criterion of linear elastic fracture, and energy dissipation rate fracture resistance can be taken as an extension of the Griffith criterion to the elastic-plastic fracture.  相似文献   

5.
The stress wave energy released from notched specimens of structural steel was measured in order to compare it with the recently proposedJ-integral which takes account of the effect of large plastic deformation around the crack tip in ductile materials. Very close agreement was observed between theJ-integral and the differential stress wave energy released. This suggests that the increment of the stress wave energy released is proportional to the decrement of the work done on the specimen during tensile testing under the plane stress condition. This result, combined with information obtained from linear elastic fracture mechanics, leads to a relationship between the differential stress wave energy released and the stress intensity factorK, [Δ(SWER)/Δa] ∝K 2. It was also found that in the region before general yielding, the stress wave energy release was proportional to the development of plastic zone size. A larger portion of the accumulated stress wave energy released was generated after general yielding due to void formation and coalescence. The accumulated stress wave energy released at the catastrophic crack growth point reached virtually the same value for each specimen, independent of the initial crack length. This implies that void formation and coalescence are not influenced by the initial crack length, but by the geometry of the crack tip.  相似文献   

6.
It is known that the plasticity models affect characterization of the crack tip fields. To predict failure one has to understand the crack tip stress field and control the crack. In the present work the element-free Galerkin methods for gradient plasticity theories have been developed and implemented into the commercial finite element code ABAQUS and used to analyze crack tip fields. Based on the modified boundary layer formulation it is confirmed that the stress singularity in the gradient plasticity theories is significantly higher than the known HRR solution and seems numerically to equal to 0.78, independently of the strain-hardening exponent. The strain singularity is much lower than the known HRR one. The crack field in gradient plasticity under small-scale yielding condition consists of three zones: The elastic K-field, the plastic HRR-field dominated by the J-integral and the hyper-singular stress field. Even under gradient plasticity there exists an HRR-zone described by the known J-integral, whereas the hyper-singular zone cannot be characterized by J. The hyper-singular zone is very small (r ? J/σ0) and contained by the HRR zone in the infinitesimal deformation framework. The finite strains under the gradient plasticity will not eliminate the stress singularity as r → 0, in contrast to the known finite strain results under the Mises plasticity. Numerically no significant changes in characterization of the stress field were found in comparison with the infinitesimal deformation theory. Since the hyper-singular stress field is much smaller than the HRR zone and in the same size as the fracture process zone, one may still use the known J concept to control the crack in the gradient plasticities. In this sense the gradient plasticity will not change characterization of the crack.  相似文献   

7.
The three-point-bend bar is a common specimen configuration used in experimental fracture studies. It is essentially a two-dimensional configuration in the form of a simply supported beam with an initial edge crack on the cross-section at mid-span. The specimen is loaded to fracture initiation by means of a concentrated transverse force applied at mid-span on the uncracked surface of the beam. In the present case, it is assumed that the material of interest is ductile, and that fracture initiation occurs after substantial plastic deformation, which develops in the uncracked ligament under the applied load. Furthermore, it is assumed that the loading is rapidly applied so that material inertia must be taken into account in relating applied loads to crack tip fields. It is supposed that the crack tip conditions are such that the J-integral may be adopted as a characterizing parameter. The main purpose of the present study is to determine conditions under which the value of J at initiation may be inferred from quantities that are directly measurable in an experiment. To this end, J is determined from computed field quantities by means of a crack tip integral that is suitable for finite element procedures. The value of J is simultaneously computed in terms of measurable quantities by means of an appropriate deep crack formula, and implications for fracture testing of tough materials at relatively high loading rates are discussed. The notion of a transition time, defined as the time beyond which a deep crack formula may be used to compute J in an experiment, is introduced on the basis of simple model studies. Calculations are performed for typical specimen dimensions and material properties representative of a high-strength structural steel in a ductile condition.  相似文献   

8.
In this paper we study the mechanical attributes of the fractal nature of fracture surfaces. The structure of stress and strain singularity at the tip of a fractal crack, which can be self-similar or self-affine, is studied. The three classical modes of fracture and the fourth mode of fracture are discussed for fractal cracks in two-dimensional and three- dimensional solid bodies. It is discovered that there are six modes of fracture in fractal fracture mechanics. The J-integral is shown to be path-dependent. It is explained that the proposed modified J-integrals in the literature that are argued to be path-independent are only locally path-independent and have no physical meaning. It is conjectured that a fractal J-integral should be the rate of potential energy release per unit of a fractal measure of crack growth. The powers of stress and strain singularities at the tip of a fractal crack in a strain-hardening material are calculated. It is shown that stresses and strains have weaker singularities at the tip of a fractal crack than they do at the tip of a smooth crack.  相似文献   

9.
The J-integral is applied to a Dugdale crack perpendicular to an interface of materials with equal elastic properties but different yield stresses. It is shown that the integral is path independend with certain limitations to the integration path. Three essentially different paths can be distinguished. The first integration path is totally within the first material, it provides the local crack driving force. Performing the integral around the plastic zone in both materials gives the global crack driving force. An interface force can be defined by evaluating the integral along both sides of the plastically deformed region of the interface. A comparison of these three integrals reveals that the global crack driving force is equal to the sum of the local crack driving force and of the interface force. The derived expression for the J-integral are compared with the crack tip opening displacement published recently. This reveals that the local J describes the plastic deformation at the crack tip. Therefore it represents the crack driving force in bimaterials as it does the conventional J-integral in case of homogeneous materials. The analyses are also extended to cyclic plasticity, where an out-of-phase effect is observed. Finally it is discussed how these results can be used to explain fatigue tests at bimaterial specimens.  相似文献   

10.
This work deals with the influence of crack depth on the fracture toughness at initiation of crack growth and the constraint factor in relationship between the J-integral and the crack tip opening displacement (CTOD). A series of tests were performed on high strength low alloyed HT80 steel welds, and the critical J-integral and CTOD were determined using the load versus load point displacement record from three-point bend specimens with 0.05 < a/W < 0.5. It was found that the fracture toughness for shallow cracks at the onset of crack growth was larger than that for deep cracks for the steel welds tested, but it is felt that there is no fixed relationship between these values in the welds tested. The constraint factor is also a function of crack depth, and values of the factor increase from 0.5 to 1.5 when a/W increases from about 0.05 to 0.5. The factors are not very sensitive to the crack tip materials (HAZ or weld metal) in the welds tested.  相似文献   

11.
The essential work of fracture (EWF) and the J-integral methods were applied in a study of the effect of the thickness on the cracking resistance of thin plates. The paper discusses two themes: (1) the relationships between the two methods or concepts is elucidated, and (2) a new, thickness independent plane stress toughness parameter is proposed. For that purpose, cracked aluminium 6082O thin plates of 1-6 mm thickness were tested in tension until final separation. The EWF, we, and the J-integral at cracking initiation, Ji, increase identically with thickness except at larger thickness for which the increase of Ji levels off. Ji reaches a maximum for 5-6 mm thickness whereas we keeps increasing linearly with thickness. This difference is related to the more progressive development of the necking zone in front of the crack tip when thickness increases: at large thickness, cracking initiates well before the neck has developed to its stationary value during propagation. A linear regression on the fracture toughness/thickness curve allows partitioning the two contributions of the work of fracture: the plastic work per unit area for crack tip necking and a plane stress work per unit area for material separation. The pertinence of this new measure of the pure plane stress cracking resistance is critically discussed based on a micromechanical model for ductile fracture. The micromechanical void growth model incorporates void shape effects, which is essential in the low stress triaxiality regime.  相似文献   

12.
The aim of this work is to explore experimentally the validity of the concepts of J-integral and crack tip opening displacement for characterizing the stress and strain state at the tip of an axisymmetrical crack in a bar undergoing large plastic strain before crack extension. The tests are made on extruded copper round bars presenting a very high ductility. Three different analytical formulations of the J-integral proposed in the literature for circumferentially cracked bars are compared at initiation of cracking. The limit between shallow crack and deep crack geometries is experimentally demonstrated. It is found that, in neither of these geometries, J and CTOD are dominant. However, the ratio Jc/c is constant for deep cracks, which suggests an alternative fracture criterion consisting in postulating the dissipation of an average critical energy per unit volume until crack extension.  相似文献   

13.
Two crack tip elements are formulated for a stationary, mode I plastic crack in planar structures using hybrid assumed stress approach, based on the secant modulus and the Newton-Raphson schemes, respectively. The stress distribution in the crack tip element is assumed to be the HRR field superimposed by the regular polynomial terms. The formulated (hybrid) crack tip elements are compatible with the isoparametric element so that they can be used conveniently along with the conventional displacement-based finite elements. The intensity of the HRR stress field, the J-integral, is determined directly from the finite element equations together with the nodal displacements. The dominance of the HRR stress field at the crack tip is pertinent to the present approach, which depends on geometry and loading conditions. Since the J-integral is globally path-independent for nonlinear elastic materials (deformation plasticity model), in order to assess the accuracy and efficiency of the methodology as compared to the contour integration approach, numerical studies of common plane-stress cracked configurations are performed for these materials. The results indicate that for a sufficiently small crack tip element size, J from the present approach correlates well, within 6 percent difference, with that from the contour integration for a wide range of material hardening coefficients if the HRR zone exists at the crack tip. These highly accurate results for J from the crack tip stresses could not be achieved without using (newly) modified variational principles and a refined numerical technique. It should be emphasized that the present methodology also can be applied to cracks in J 2 flow materials under HRR dominance. In such case, the J integral may not be globally path independent, and hence it now must be determined from the stress and strain fields near the crack tip.  相似文献   

14.
This paper investigates interfacial crack tip stress fields and the J-integral for bi-materials with plastic hardening mismatch via detailed elastic-plastic finite element analyses. For small scale yielding, the modified boundary layer formulation with the elastic T-stress is employed. For fully plastic yielding, plane strain single-edge- cracked specimens under pure bending are considered. Interfacial crack tip stress fields are explained by modified Prandtl slip-line fields. It is found that, for bi-materials consisting of two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and the J-contribution there. The implication of asymmetric J-integral in bi-materials is also discussed.  相似文献   

15.
Finite element modelling of crack propagation in elastic-plastic media   总被引:1,自引:0,他引:1  
Materials which are cyclically stressed by sliding indenters often undergo fatigue wear, as surface breaking vertical cracks and subsurface horizontal cracks propagate causing eventual loss of material. In this study, the authors model crack propagation in an elastic-plastic material using finite element techniques, and consider the influence of friction, elasticity, plasticity and degree of penetration on the J-integral at the tip of a vertical crack. Crack propagation directions are estimated using J-integral maxima as the determining variable. It is found that the J-integral values, as a measure of strain energy release rate, can be used to estimate the crack propagation angle. Its main advantage lies in the fact that it considers both modes (I, II) of crack propagation. Using the J-integral values, one finds that, in the absence of friction between the indenter and the material, the vertical crack is equally prone to propagation at both 45 and 135° angles. However, one notices that the vertical crack favours the direction opposite to the direction of rolling for non-zero values of friction, i.e. 135°. The effects of both the crack depth and the crack tip plasticity are also investigated. It is found that any experimental findings suggestive of crack orientations closer to the horizontal in the direction opposite to the sliding direction are probably a result of shallow vertical asperities or higher crack tip plasticity.  相似文献   

16.
The divergence theorem has been used in a region containing the crack tip to derive the J-integral from the potential energy variation in most fracture mechanics books. Such a derivation is flawed because of the crack tip stress singularity. The present study describes a rigorous and straightforward derivation of the J-integral from the potential energy variation with crack extension by carefully addressing the effect of the crack tip singularity.  相似文献   

17.
In the present work, mode I and mode II tests were carried out on two low alloyed high strength steels. An asymmetrical four point bend specimen and J II-integral vs. crack growth resistance curve technique were used for determining the mode II elastic-plastic fracture toughness, J IIc · J II-integral expression of the specimen was calibrated by finite element method. The results indicate that the present procedure for determining the J IIc values is easy to use. Moreover, the mode I fracture toughness J Ic is very sensitive to the rolling direction of the test steels, but the mode II fracture toughness J IIc is completely insensitive to the rolling direction of the steels, and the J IIc /J Ic ratio is not a constant for the two steels, including the same steel with different orientations. Finally, the difference of the fracture toughness between the mode I and mode II is discussed with consideration of the different fracture mechanisms.  相似文献   

18.
Ductile fracture is initiated by void nucleation at a characteristic distance (Ic) from the crack tip and propagated by void growth followed by coalescence with the tip. The earlier concepts expressed Ic in terms of grain size or inter-particle distance because grain and particle boundaries form potential sites for void nucleation. However, Srinivas et al. (1994) observed nucleation of such voids even inside the crack tip grains in a nominally particle free Armco iron. In an attempt to achieve a unified understanding of these observations, typical crack-tip blunting prior to ductile fracture in a standard C(T) specimen (Mode I) was studied using a finite element method (FEM) supporting large elasto-plastic deformation and material rotation. Using a set of experimental data on Armco iron specimens of different grain sizes, it is shown that none of the locations of the maxima of the parameters stress, strain and strain energy density correspond to Ic. Nevertheless, the size of the zone of intense plastic deformation, as calculated from the strain energy density distribution ahead of the crack tip in the crack plane, compares well with the experimentally measured Ic. The integral of the strain energy density variation from the crack tip to the location of void nucleation is found to be linearly proportional to JIC. Using this result, an expression is arrived at relating Ic to JIC and further extended to CTODc.  相似文献   

19.
Leak-before-break (LBB) assessment of primary heat transport piping of nuclear reactors involves detailed fracture assessment of pipes and elbows with postulated throughwall cracks. Fracture assessment requires the calculation of elastic–plastic J-integral and crack opening displacement (COD)1 for these piping components. Analytical estimation schemes to evaluate elastic–plastic J-integral and COD simplify the calculations. These types of estimation schemes are available for pipes with various crack configurations subjected to different types of loading. However, such schemes for elbow (or pipe bend), which is one of the important components for LBB analyses, is very meager. Recently, elastic–plastic J and COD estimation scheme has been developed for throughwall circumferentially cracked elbow subjected to closing bending moment. However, it is well known that the elbow deformation characteristics are distinctly different for closing and opening bending modes because the ovalisation patterns of elbow cross section are different under these two modes. Development of elastic–plastic J and COD estimation scheme for an elbow with throughwall circumferential crack at intrados subjected to opening bending moment forms the objective of the present paper. Experimental validation of proposed J-estimation scheme has been provided by comparing the crack initiation, unstable ductile tearing loads and crack extension at instability with the test data. The COD estimation scheme has been validated by comparing the COD of test data with the predictions of the proposed scheme.  相似文献   

20.
Fracture criterion of the J-integral finds wide application in the integrity evaluation of welded components, but there exist some confused problems such as the dependence of the fracture toughness on the strength mis-matching and specimen geometry which need to be clarified. It is rough and unsuitable to attribute the variation of J-integral fracture parameter simply to the effect of mechanical heterogeneity. In the present paper, a two-dimensional finite element method is employed to analyze the distribution and variation of crack tip field of welded joints with different strength mis-matching in four kinds of specimen geometry, and then the validity of J-dominance in welded joints is investigated. It is found that the crack tip field of mis-matched joint is different from that of either the weld metal or base metal of which the joint is composed, but it is situated between those of weld metal and base metal. Under the plane strain, there is obvious difference in stress triaxiality for different strength mis-matched joints. The validity of J-dominance in welded joint can not be obtained by comparing whether the stress triaxiality meets that required by the HRR solution because of the existence of mechanical inhomogeneity. By ascertaining if the stress triaxiality of welded joint near the crack tip is dependent of specimen geometry, the conclusion can be arrived at: for plane stress the validity of J-dominance is valid, whilst for plane strain the validity of J-dominance is lost. Based on the above, attempt has been made to point out that the influence of mechanical heterogeneity on the fracture toughness of weldment arises from the variation of constraint intensity-crack tip stress triaxiality. Compared with the effect of mechanical heterogeneity on the stress triaxiality, the losing of validity of J-dominance in mis-matched joint under plane strain may play a more critical role in the variation of J-integral fracture parameter of weldment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号