首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
陶求华  李莉 《暖通空调》2012,42(4):72-75
为考察冬季非空调环境下人体热感觉,对厦门某高校教室的热舒适度进行了现场测试.在测量室内外热舒适参数的同时,通过问卷调查得到了人体热反应样本.分析样本得出厦门高校教室冬季非空调工况下人体热中性温度和热期望温度分别为19.3和19.4℃.综合考虑温度、相对湿度、平均辐射温度、风速及服装热阻对坐姿轻度活动状态人体的热舒适影响,使用MATLAB软件进行非线性回归,得到非空调工况下热舒适预测方程.该预测方程与实测得到的人体热舒适投票两者结果有较高相关度,同时较大程度上反映了冬季非空调环境下人体热感觉的变异.  相似文献   

2.
以广州某大型综合商场为研究对象,采用问卷调查和现场测试相结合的方式,对商场冬季室内热舒适性进行了调查研究,并对调查测试结果进行了统计回归分析。研究结果显示:商场冬季室内实测热中性温度为19.4℃,90%满意度热舒适温度范围为16.1~22.7℃;而根据PMV计算得到的室内热中性温度为16.8℃,90%满意度热舒适温度范围为13.3~20.4℃;PMV模型预测的热感觉比现场问卷调查得到的平均热感觉MTS要高,与实际感觉存在一定偏差。基于实测热舒适数据,进一步分析了室内热中性温度与室外空气温度的相关性,确立了商场冬季室内热中性温度与室外空气温度的近似线性关系,建立了商场冬季室内热舒适气候适应性模型。  相似文献   

3.
吐鲁番农村住宅冬季室内热舒适调查研究   总被引:1,自引:0,他引:1  
对吐鲁番57户农村住宅中108名居民的热感觉、热舒适等进行了主观问卷调查,测试了温度、相对湿度等室内外环境参数,运用统计学分析方法对测试与调查结果进行了回归分析。结果表明,吐鲁番农村住宅冬季实测的热中性温度为19.3℃,预测热中性温度为21.2℃;通过两种计算方法获得的热期望温度分别为19.7℃和19.6℃;80%居民可接受的温度范围为15.2~27.4℃。由于受干热干冷的地域气候影响,冬季可接受的最低温度范围明显高于其他地区的农村住宅。  相似文献   

4.
为了研究大连地区冬季办公建筑室内热环境现状和人体热舒适情况,对大连市6栋办公建筑的17间办公室进行了现场调研.结果表明:大连地区冬季办公建筑平均室内温度为22.6℃,温度高于20℃,高于《公共建筑节能设计标准》(GB50189-2015)的节能要求;平均相对湿度为24.1%,低于30%,室内空气干燥;室内空气流速范围为0~0.02 m/s,满足人体舒适度要求.通过拟合计算得出,人体热中性温度为19.8℃,接近《民用建筑供暖通风与空气调节设计规范》(GB50736-2016)推荐的寒冷地区室内温度20℃.80%的人员可接受的温度范围为16.0~23.5℃,90%的人员可接受的温度范围为17.6~22.0℃.分析了性别、BMI指数以及人员位置等非环境因素对人体热舒适的影响,并将研究结果与其他地区冬季办公建筑研究进行对比,发现由北到南,热中性温度逐渐降低,热舒适温度范围变化不大.  相似文献   

5.
焦作市冬季居住建筑室内人体热舒适现场研究   总被引:1,自引:0,他引:1  
为了研究寒冷地区中小城市冬季室内的热环境状况,对焦作市44户住宅的冬季室内热环境进行了现场调查.对99名居民的热感觉、热舒适等进行了主观问卷调查,同时测试了温度、相对湿度、风速等室内外环境参数,对测试与调查结果进行了统计回归分析.结果表明,焦作市居住建筑冬季实测的热中性温度为19.2℃,预测热中性温度为24.3℃,两者相差5.1℃;居民期望温度为21.0℃;该地区冬季居民的热适应模型为tcomf=0.317tout+18.19,80%居民可接受温度范围为11.6~24.2℃.  相似文献   

6.
为研究严寒地区火炕采暖不均匀环境的热舒适温度及其影响因素,对火炕农宅冬季的室内热环境进行了现场测试,建立了热舒适评价模型,并对热环境评价方法进行了分析.同时,利用CFD仿真模拟的方法对室内热舒适性的影响因素进行了分析.测试结果表明,火炕农宅冬季的室内热舒适温度为17.7 ℃,90%可接受的操作温度的范围为14.7~ 20.8℃.模拟结果表明,在保证基本供暖室温的前提下,较低的火炕表面温度、较高的辅助热源温度以及保温性能较好的围护结构,有助于减小室内温度不均匀性,增加居民热舒适感.火炕营造的微气候环境可以满足农宅居民的热舒适要求.  相似文献   

7.
哈尔滨市某高校教室冬季热舒适研究   总被引:1,自引:0,他引:1  
本文于2006年12月中旬至2007年1月中旬对哈尔滨市某高校33间教室冬季热环境进行了为期一个月的现场调查和测试,受试者643名.在此基础上建立了冬季教室环境下的热感觉模型,利用线性回归方法得出了冬季教室环境下的热中性温度和热期望温度,发现相同环境下女生的热中性温度和热期望温度均高于男生.同时将本文的研究结果与其他研究结果进行了对比,得出冬季教室内学生对热环境的最低不满意率要低于其他研究结果,80%可接受温度范围的下限值也低于国外研究结果.  相似文献   

8.
热舒适温度与建筑节能   总被引:3,自引:0,他引:3  
通过对已进行的热舒适现场调查研究分析,认为我国热中性温度范围夏季为22.0~28.7℃、冬季为18.5~23.7℃,虽然我国公共建筑节能设计标准(GB 50189-2005)规定的一般房间内空调设计温度(夏季为25℃、冬季为20℃)处于已有研究的热中性温度范围之内,但从热舒适和节能的角度看,还有一定调节的余地和节能潜力.  相似文献   

9.
对青海乡域4所典型中小学校10间教室冬季室内温湿度、风速、黑球温度等热环境参数进行现场测试,同时对420余名青少年学生的衣着情况、热感觉评价等进行了主观问卷调查。对测试和调查结果进行统计分析,得到实测和预测热中性温度分别为13.8和14.5℃,热期望温度为16.2℃,90%的学生感到满意的舒适温度范围为15.8~18.7℃。在当地寒冷的气候条件、学生衣着习惯、心理期望及生理特性等因素影响下,中小学生形成了对偏冷环境的适应性,提出可利用适应性PMV模型(aPMV)对中小学生平均热感觉进行准确预测。可为乡域中小学教室冬季热环境设计提供依据。  相似文献   

10.
长沙地区公共建筑热湿现状与热舒适性研究   总被引:1,自引:0,他引:1  
本文通过对长沙地区夏季和冬季办公楼、博物馆、火车站候车室、酒店、商场和医院等公共建筑室内环境热湿参数进行实测以及对人员热感觉进行问卷调查,分析了不同公共建筑内的热湿现状和人体热舒适性。对现场测试结果进行分析可知,夏季火车站室内平均空气温度高达29.8℃,而博物馆内只有22.7℃;冬季大部分公共建筑(除酒店外)室内平均空气温度低于18.0℃。问卷调查统计结果表明夏季博物馆内人们热感觉偏冷、火车站候车室内热感觉偏热;而冬季博物馆、火车站候车室和商场内人们热感觉均偏冷。此外,各公共建筑内夏季实测平均热感觉投票值TSV低于理论PMV,而冬季高于理论PMV。进一步的人体热舒适性分析得到夏季和冬季公共建筑内实测热中性温度分别为27.4℃和15.7℃,而根据PMV获得的理论热中性温度分别为26.6℃和19.8℃,实测值与理论值的差别说明在该地区公共建筑内,人们的耐热和耐冷能力都有所增强。夏季和冬季公共建筑内能被80%的人们所接受的热舒适温度范围分别为25.5~29.4℃和13.5~19.6℃。本文分析得到的热中性温度和热舒适温度范围可为夏热冬冷地区公共建筑暖通空调系统的节能设计提供一定的参考。  相似文献   

11.
上海高层住宅夏季室内热环境调查研究   总被引:2,自引:0,他引:2  
史洁  李峥嵘  宋德萱  夏博  孙宇 《暖通空调》2007,37(5):118-121,64
2006年夏季对上海高层住宅的建筑概况、空调设备、生活方式、能源消费及舒适度等进行了问卷调查并测试了室内温湿度,分析了室外气候条件、住宅形式、人员活动等因素对室内热环境的影响。研究结果表明,底层、中间层、顶层室内温湿度和舒适度差别不大,住户对中午时热环境的不满意率高于早上和晚上,但在能够采取一些降温措施时,不满意率会降低。  相似文献   

12.
哈尔滨高校教室热舒适现场研究   总被引:1,自引:0,他引:1  
为了研究高校教室在学生上课期间的热环境和人体热舒适,在哈尔滨高校教室进行了现场研究。在测量室内热舒适参数的同时,学生填写对室内环境的热感觉和热舒适主观调查表,共调查了1285人次,得到了1285份人体热反应的样本。现场测试结果表明,哈尔滨高校自然通风教室全年人体热中性温度为23.4℃(t0)。  相似文献   

13.
套室内人体热舒适的研究   总被引:2,自引:3,他引:2  
借助于通用流场计算软件PHOENICS,在考虑了外界气温、太阳的热辐射条件,家具以及人员等室内微气候影响的情况下,预测了两室一厅套室内气流三维流场和温度场。得到了套室内气流的速度、温度和人体热舒适指数等参数的分布,并经过评定,该套室内的热环境达到了人体的舒适性要求。模拟计算结果对套室的设计及其空调系统的配置具有重要的参考价值,并为套室内人体热舒适的进一步研究和室内空气品质问题的研究奠定了基础。  相似文献   

14.
改善高校图书馆建筑热舒适环境是提高学生学习条件的重要方面。基于对现场实测和调查问卷的方法,对成都地区某高校图书馆室内温度、相对湿度、辐射温度、风速进行了现场测试,同时,对室内人体热舒适性主观评价进行了调研,然后对不同楼层及不同区域实测数据与TSV的投票结果进行了对比分析。研究结果表明,热舒适性随楼层升高而降低,同楼层内由中心区域向窗户处递减,而临湖面区域又较背湖面区域热舒适高。此外,给出了改善图书馆建筑热舒适性的建议。  相似文献   

15.
用CFD方法数值模拟了分体式空调器室内机在室内摆放位置不同时,在相同送风温度和送风速度下,对室内温度场、速度场以及热舒适性的影响.模拟结果表明:相同送风温度和送风速度情况下,不同的室内机位置产生了不同的室内温度场、速度场;与室内布局相适宜的室内机摆放位置可以改善室内舒适度.  相似文献   

16.
随着人们生活水平的不断提高,人们对室内环境舒适度的要求也提出了更高要求,良好的室内热湿环境不仅影响人体健康,同时也能给工作生活带来愉快的心情。此次实验研究,选取三峡大学综合教学楼B区作为实验地点,通过随机对教室内的学生发放调查问卷,综合分析实验结果,研究了空气温湿度对人体热舒适性的影响,分别根据热感觉和热舒适投票值确定了人体热舒适区,研究发现80%满意率的室内温度范围在22~26℃,相对湿度范围在45%~55%,得到的夏季舒适区范围与ASHRAEStanard55-1992相比也略有偏差。  相似文献   

17.
This paper presents the findings of a field study of occupant thermal comfort and thermal environments with a radiant slab cooling system. The study combined field measurements and questionnaires based on the ASHRAE RP-921 project protocol. A total of 116 sets of data from 82 participants were collected in summer and winter. The results reveal that occupant whole-body thermal sensations with radiant cooling were consistent with the PMV model. The main advantage of radiant cooling for thermal comfort was found to be reduced local thermal discomfort with reduced vertical air temperature difference as well as reduced draft rate. The survey results revealed that 14–22% of participants in the study reported local cold discomfort in the arm–hand and the leg–foot regions. The results indicated that there may be lower limits on air speeds acceptable to occupants. Statistical analysis indicated that occupant thermal votes were free of significant correlation with personal, contextual and psychological factors. Suggestions to improve the questionnaire and the field survey process are offered.  相似文献   

18.
现场研究中热舒适指标的选取问题   总被引:8,自引:0,他引:8  
王昭俊 《暖通空调》2004,34(12):39-42
对热舒适现场研究结果进行了总结,并对热舒适指标的选取、有效温度的计算、热感觉的表述方式等问题进行了讨论分析。认为当相对湿度在热舒适范围内时,采用有效温度作为热舒适指标并采用平均热感觉值,能更好地预测人体热感觉。  相似文献   

19.
The purpose of conditioning the air in a building is to provide a safe and comfortable environment for its occupants. Satisfaction with the environment is composed of many components, the most important of which is thermal comfort. The principal environmental factors that affect human comfort are air temperature, mean radiant temperature, humidity, and air speed; virtually all heating, ventilating and air-conditioning (HVAC) systems, however, are usually controlled only by an air-temperature set-point. Significant efficiency improvements could be achieved if HVAC systems responded to comfort levels rather than air-temperature levels. The purpose of this report is to present a simplified model of thermal comfort based on the original work of Fanger, who related thermal comfort to total thermal stress on the body. The simplified solutions allow the calculation of predicted mean vote (PMV) and effective temperature which (in the comfort zone) are linear in the air temperature and mean radiant temperature, and quadratic in the dew point, and which can be calculated without any iteration. In addition to the mathematical expressions, graphical solutions are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号