共查询到19条相似文献,搜索用时 93 毫秒
1.
本文概要地介绍了一种新型热稳定纳米层状陶瓷--MN+1AXN相的结构、性能和应用前景.MN+1AXN相为层状六方结构,能导电、导热.其维氏硬度一般在2~5GPa之间,具有良好的抗热震性和低摩擦系数,并且易于加工.温度较高时,在空气中会发生氧化. 相似文献
2.
3.
4.
5.
利用热等静压原位合成技术制备了Ti3SiC2/SiC复相陶瓷,对其高温氧化行为进行了研究.结果表明,Ti3SiC2/SiC复相陶瓷在空气中静态氧化时的氧化增重符合抛物线规律,有比纯Ti3SiC2更好的抗氧化性能,并且在1400℃的长时抗氧化性能优于1200℃. 相似文献
6.
7.
8.
9.
为了进一步了解Ti3SiC2/nSiC复合材料优良的综合性能,特别是其高温力学性能,本文以热等静压原位合成技术制备的Ti3SiC2/4SiC复相陶瓷为试验材料,对其高温拉伸和高温弯曲行为进行研究。结果表明:Ti3SiC2/4SiC复相陶瓷的高温抗拉强度比室温抗拉强度高;Ti3SiC2/4SiC复相陶瓷的高温抗弯强度在900℃出现一极大值,1000℃后具有好的高温塑性。 相似文献
10.
11.
Microstructure and Mechanical Properties of (TiB2 + SiC) Reinforced Ti3SiC2 Composites Synthesized by In Situ Hot Pressing 下载免费PDF全文
Fully dense (TiB2 + SiC) reinforced Ti3SiC2 composites with 15 vol% TiB2 and 0–15 vol% SiC were designed and synthesized by in situ reaction hot pressing. The increase in SiC content promoted densification and significantly inhibited the growth of Ti3SiC2 grains. The in situ incorporated TiB2 and SiC reinforcements showed columnar and equiaxed grains, respectively, providing a strengthening–toughening effect by the synergistic action of particulate reinforcement, grain's pulling out, “self‐reinforcement,” crack deflection, and grain refining. A maximum bending strength of 881 MPa and a fracture toughness of 9.24 MPam1/2 were obtained at 10 vol% SiC. The Vickers hardness of the composites increased monotonously from 9.6 to 12.5 GPa. 相似文献
12.
Pavel Istomin Elena Istomina Aleksandr Nadutkin Vladislav Grass Mikhail Kaplan 《International Journal of Applied Ceramic Technology》2019,16(2):746-752
Dense Ti3SiC2-SiC, Ti4SiC3-SiC, and Ti3SiC2-Ti4SiC3-SiC ceramic composites were fabricated through carbosilicothermic reduction of TiO2 under vacuum, followed by hot pressing of the as-synthesized products under 25 MPa at 1600°C. In the reduction step, SiC either alone or in combination with elemental Si was used as a reductant. A one-third excess of SiC was added in the reaction mixtures in order to ensure the presence of approximately 30 vol.% SiC in the products of synthesis. During the hot pressing step, the samples that contained Ti3SiC2 showed better densification compared to those containing Ti4SiC3. The obtained composites exhibited the strength properties typical of coarse-grained MAX-phase ceramics. The flexural strength values of 424 and 321 MPa were achieved in Ti3SiC2-SiC, and Ti3SiC2-Ti4SiC3-SiC composites, respectively. The fracture toughness values were 5.7 MPa·m1/2. 相似文献
13.
Al对等离子放电烧结法合成Ti3SiC2的影响研究 总被引:1,自引:0,他引:1
以元素为原料,Al为助剂,采用等离子放电烧结(SPS)工艺合成Ti3SiC2块体材料,通过X射线衍射分析和对SPS过程参数的研究表明:适量A1能促进Ti3SiC2的反应合成,提高合成材料的纯度,但Al也会使Ti3SiC2的热稳定性降低。 相似文献
14.
Xiaobing Zhou Lin-Kun Shi Shunrui Zou Jie Xu Yihe Liu Peter Tatarko 《International Journal of Applied Ceramic Technology》2021,18(5):1670-1676
A pair of Ti3SiC2 reinforced with SiC whiskers (SiCw/Ti3SiC2) composites was successfully joined without any joining materials using electric field-assisted sintering technology at a temperature as low as 1090°C (Ti) and a short time of 30 s. The microstructure and mechanical properties of the obtained SiCw/Ti3SiC2 joints were investigated. The solid-state diffusion was the main joining mechanism, which was facilitated by a relatively high current density (~586 A/cm2) at the joining interface. The shear strength of the sample joined at 1090°C was 51.8 ± 2.9 MPa. The sample joined at 1090°C failed in the matrix rather than at the interface, which confirmed that a sound inter-diffusion bonding was obtained. A rapid and high efficient self-joining process may find application in the case of SiCw/Ti3SiC2 sealing cladding tube and end cap. 相似文献
15.
采用第一性原理方法,系统地研究了MAX相材料Ti3AC2(A=Si,Al)的结构、弹性和电子性质.对比LDA和GGA计算结果可知,采用GGA近似得到的结果更接近实验值.计算分析了Ti3AC2(A=Si,Al)的弹性性质,并根据弹性常数证明了其力学稳定性.此外,还从电子态密度和Mulliken布居分析的角度考察了Ti3AC2(A=Si,Al)的电子性质和价键特性,认为其具有共价键、离子键和金属键的综合性质.本文计算结果与文献报道吻合较好. 相似文献
16.
Apurv Dash Jürgen Malzbender Khushbu Dash Marcin Rasinski Robert Vaßen Olivier Guillon Jesus Gonzalez-Julian 《Journal of the American Ceramic Society》2020,103(10):5952-5965
The compressive creep of a SiC whisker (SiCw) reinforced Ti3SiC2 MAX phase-based ceramic matrix composites (CMCs) was studied in the temperature range 1100-1300°C in air for a stress range 20-120 MPa. Ti3SiC2 containing 0, 10, and 20 vol% of SiCw was sintered by spark plasma sintering (SPS) for subsequent creep tests. The creep rate of Ti3SiC2 decreased by around two orders of magnitude with every additional 10 vol% of SiCw. The main creep mechanisms of monolithic Ti3SiC2 and the 10% CMCs appeared to be the same, whereas for the 20% material, a different mechanism is indicated by changes in stress exponents. The creep rates of 20% composites tend to converge to that of 10% at higher stress. Viscoplastic and viscoelastic creep is believed to be the deformation mechanism for the CMCs, whereas monolithic Ti3SiC2 might have undergone only dislocation-based deformation. The rate controlling creep is believed to be dislocation based for all the materials which is also supported by similar activation energies in the range 650-700 kJ/mol. 相似文献
17.
18.
Chenlong Wu Rui Zhang Fuyan Liu Biao Chen 《International Journal of Applied Ceramic Technology》2023,20(3):1846-1854
The electrochemical corrosion behaviors of Ti3SiC2/Cu composite and polycrystalline Ti3SiC2 in a 3.5% NaCl medium were investigated by dynamic potential polarization, potentiostat polarization, and electrochemical impedance spectroscopy. The polycrystalline Ti3SiC2 was tested on the identical condition as a control. The characterizations of XRD, X-ray photoelectron spectroscopy, scanning electron microscope, and energy-dispersive spectrometer were used to study the relevant passivation behavior and corrosive mechanism. The self-corrosion current density of Ti3SiC2/Cu (6.46 × 10−6 A/cm2) was slightly higher than that of Ti3SiC2 (1.64 × 10−7 A/cm2). Under open circuit potential, the corrosion resistance of Ti3SiC2/Cu was better than that of Ti3SiC2. Ti3SiC2/Cu exhibited a typical passivation feature with a narrow passivation interval and a breakdown phenomenon. The better corrosion resistance of Ti3SiC2 was due to the more stable Si layer of the former. In comparison, for Ti3SiC2/Cu composites, Cu reacted with the reactive Si layers in Ti3SiC2 to form Cu–Si compounds and TiC, destroying the weak interaction between Si layers and Ti–C layers. In the other hand, the as-formed Cu–Si compounds and TiC dissolved during the corrosion of Ti3SiC2/Cu in the 3.5% NaCl medium, causing to the destruction of the passivation film on its surface. 相似文献