首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigates the problem of robust H control for uncertain discrete-time systems with circular pole constraints. The system under consideration is subject to norm-bounded time-invariant uncertainties in both the state and input matrices. The problem we address is to design state feedback controllers such that the closed poles are located within a prespecified circular region, and the H norm of the closed-loop transfer function is strictly less than a given positive scalar for all admissible uncertainties. By introducing the notion of quadratic d stabilizability with an H norm-bound, the problem is solved. Necessary and sufficient conditions for quadratic d stabilizability with an H norm-bound are derived. Our results can be regarded as extensions of existing results on robust H control and robust pole assignment of uncertain systems.  相似文献   

2.
The paper addresses the problem of quadratic stabilisability with H-norm bound of uncertain discrete-time control-affine systems by norm-bounded controls. Both structured parameter uncertainties and unstructured exogenous disturbances are taken into account. The given definition of quadratic stabilisability is a generalisation of that used for linear systems so far. A necessary condition of the stabilisability is formulated. A state feedback control satisfying an a priori constraint is proposed for the solution of the formulated H problem. The proposed method may be applicable even in such cases when the linearisation technique cannot be used.  相似文献   

3.
We solve the problem of decentralized H almost disturbance decoupling for a class of large-scale nonlinear uncertain systems in the absence of matching conditions. The method combines ideas from decentralized adaptive control and centralized nonlinear H control. We relax earlier assumptions on the uncertain time-varying interconnections which are demanded to be only bounded by general nonlinear functions in this work.  相似文献   

4.
This paper investigates the problem of H filtering for a class of uncertain continuous-time nonlinear systems with real time-varying parameter uncertainty and unknown initial state. We develop an infinite horizon H filtering methodology which provides both robust stability and a guaranteed H performance for the filtering error irrespective of the parameter uncertainty.  相似文献   

5.
Shengyuan  Tongwen   《Automatica》2004,40(12):2091-2098
This paper deals with the problem of H output feedback control for uncertain stochastic systems with time-varying delays. The parameter uncertainties are assumed to be time-varying norm-bounded. The aim is the design of a full-order dynamic output feedback controller ensuring robust exponential mean-square stability and a prescribed H performance level for the resulting closed-loop system, irrespective of the uncertainties. A sufficient condition for the existence of such an output feedback controller is obtained and the expression of desired controllers is given.  相似文献   

6.
Robust output-feedback control of linear discrete-time systems   总被引:1,自引:0,他引:1  
The problem of designing H dynamic output-feedback controllers for linear discrete-time systems with polytopic type parameter uncertainties is considered. Given a transfer function matrix of a system with uncertain real parameters that reside in some known ranges, an appropriate, not necessarily minimal, state-space model of the system is described which permits reconstruction of all its states via the delayed inputs and outputs of the plant. The resulting model incorporates the uncertain parameters of the transfer function matrix in the state-space matrices. A recently developed linear parameter-dependent LMI approach to state-feedback H control of uncertain polytopic systems is then used to design a robust output-feedback controllers that are of order comparable to the one of the plant. These controllers ensure the stability and guarantee a prescribed performance level within the uncertainty polytope.  相似文献   

7.
This paper is concerned with a problem of stabilization and robust control design for interconnected uncertain systems. A new class of uncertain large-scale systems is considered in which interconnections between subsystems as well as uncertainties in each subsystem are described by integral quadratic constraints. The problem is to design a set of local (decentralized) controllers which stabilize the overall system and guarantee robust disturbance attenuation in the presence of the uncertainty in interconnections between subsystems as well as in each subsystem. The paper presents necessary and sufficient conditions for the existence of such a controller. The proposed design is based on recent absolute stabilization and minimax optimal control results and employs solutions of a set of game-type Riccati algebraic equations arising in H control.  相似文献   

8.
In this paper, we examine the pole location of the feedback system composed of the nominal plant and the H central controller designed by the robust stability-degree assignment. Namely, the exact pole location at γ=∞ and the behavior near the infimum of γ are clarified where γ is the upper bound of the H norm constraint. The original design goal is to stabilize the plant against additive perturbations with the regional pole placement condition Re s<−α, and the design problem is reduced to the one-block H control problem.  相似文献   

9.
In this paper we show that norm for a class of nonlinear continuous-time systems is the limit of the norm for approximating discrete-time systems. The convergence result is proved by means of a characterization of the norm in terms of the value for an ergodic control problem.  相似文献   

10.
The problem on robust H control for a class of nonlinear systems with parameter uncertainty is studied. Sufficient conditions for the existence of the dynamic output feedback controller are obtained. Under these conditions, the closed-loop systems have robust H-performance. A numerical example is given to illustrate the design of a robust controller using the proposed approach.  相似文献   

11.
The approach to robust stabilization of linear systems using normalized left coprime factorizations with bounded uncertainty is generalized to nonlinear systems. A nonlinear perturbation model is derived, based on the concept of a stable kernel representation of nonlinear systems. The robust stabilization problem is then translated into a nonlinear disturbance feedforward optimal control problem, whose solution depends on the solvability of a single Hamilton-Jacobi equation.  相似文献   

12.
Jun  David J.   《Automatica》2008,44(5):1220-1232
This paper addresses the issues of stability, L2-gain analysis and H control for switched systems via multiple Lyapunov function methods. A concept of general Lyapunov-like functions is presented. A necessary and sufficient condition for stability of switched systems is given in terms of multiple generalized Lyapunov-like functions, which enables derivation of improved stability tests, an L2-gain characterization and a design method for stabilizing switching laws. A solution to the H control problem for switched systems is also provided.  相似文献   

13.
The problem of robust H analysis and synthesis for linear discrete-time systems with norm-bounded time-varying uncertainty is studied in this paper. It will be shown that this problem is equivalent to the problem of H analysis and synthesis of an auxiliary system. The necessary and sufficient conditions for the equivalency are proved. Thus the original problem can be solved by existing H control methods.  相似文献   

14.
In this paper we show that the H synthesis problem for a class of linear systems with asynchronous jumps can be reduced to a purely discrete-time synthesis problem. The system class considered includes continuous-time systems with discrete jumps, or discontinuities, in the state. New techniques are developed for the analysis of asynchronous time-varying hybrid systems which allow a particularly simple treatment, and provide an elementary proof for the sampled-data H problem.  相似文献   

15.
We study a finite-horizon robust minimax filtering problem for time-varying discrete-time stochastic uncertain systems. The uncertainty in the system is characterized by a set of probability measures under which the stochastic noises, driving the system, are defined. The optimal minimax filter has been found by applying techniques of risk-sensitive LQG control. The structure and properties of resulting filter are analyzed and compared to H and Kalman filters.  相似文献   

16.
For two-dimensional (2-D) systems, information propagates in two independent directions. 2-D systems are known to have both system-theoretical and applications interest, and the so-called linear repetitive processes (LRPs) are a distinct class of 2-D discrete linear systems. This paper is concerned with the problem of L2L (energy to peak) control for uncertain differential LRPs, where the parameter uncertainties are assumed to be norm-bounded. For an unstable LRP, our attention is focused on the design of an L2L static state feedback controller and an L2L dynamic output feedback controller, both of which guarantee the corresponding closed-loop LRPs to be stable along the pass and have a prescribed L2L performance. Sufficient conditions for the existence of such L2L controllers are proposed in terms of linear matrix inequalities (LMIs). The desired L2L dynamic output feedback controller can be found by solving a convex optimization problem. A numerical example is provided to demonstrate the effectiveness of the proposed controller design procedures.  相似文献   

17.
Robust control of a class of uncertain nonlinear systems   总被引:17,自引:0,他引:17  
This paper considers the robust control of a class of nonlinear systems with real time-varying parameter uncertainty. Interest is focused on the design of linear dynamic output feedback control and two problems are addressed. The first one is the robust stabilization and the other is the problem of robust performance in an H sense. A technique is proposed for designing stabilizing controllers for both problems by converting them into ‘scaled’ H control problems which do not involve parameter uncertainty.  相似文献   

18.
This paper solves the problem of reduced-order H filtering for singular systems. The purpose is to design linear filters with a specified order lower than the given system such that the filtering error dynamic system is regular, impulse-free (or causal), stable, and satisfies a prescribed H performance level. One major contribution of the present work is that necessary and sufficient conditions for the solvability of this problem are obtained for both continuous and discrete singular systems. These conditions are characterized in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint. Moreover, an explicit parametrization of all desired reduced-order filters is presented when these inequalities are feasible. In particular, when a static or zeroth-order H filter is desired, it is shown that the H filtering problem reduces to a convex LMI problem. All these results are expressed in terms of the original system matrices without decomposition, which makes the design procedure simple and directly. Last but not least, the results have generalized previous works on H filtering for state-space systems. An illustrative example is given to demonstrate the effectiveness of the proposed approach.  相似文献   

19.
In the present paper singular state feedback suboptimal control for a class of nonlinear cascade systems is addressed. Under the assumption that a regular state feedback suboptimal control problem is solvable for a particular subsystem of the cascade system, an auxiliary nonlinear system is defined. It is shown that a state feedback solution to the singular suboptimal control problem for the auxiliary system also applies to the original problem. The advantage of the auxiliary problem to the original problem is that the auxiliary penalty variable has lower dimension than the original penalty variable. It is shown how this fact can simplify the problem considerably for the case when the auxiliary system can be strongly input-output decoupled. The theory is applied to a problem of a rigid spacecraft with actuator dynamics. Application to the special case when a subsystem of the nonlinear cascade system is passive is also considered.  相似文献   

20.
In this paper, a robust nonlinear controller is designed in the Input/Output (I/O) linearization framework, for non-square multivariable nonlinear systems that have more inputs than outputs and are subject to parametric uncertainty. A nonlinear state feedback is synthesized that approximately linearizes the system in an I/O sense by solving a convex optimization problem online. A robust controller is designed for the linear uncertain subsystem using a multi-model H2/H synthesis approach to ensure robust stability and performance of non-square multivariable, nonlinear systems. This methodology is illustrated via simulation of a regulation problem in a continuous stirred tank reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号