首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Spermiogenesis in Raillietina (Raillietina) tunetensis begins with the formation of a differentiation zone equipped with cortical microtubules and containing two centrioles. One of the centrioles very rapidly gives rise to a flagellum which fuses with a median cytoplasmic extension, the cortical microtubules elongate and arched membranes appear. After the migration of the nucleus two crest-like bodies form and the old spermatid becomes detached from the residual cytoplasm. The mature spermatozoon of R. (R.) tunetensis exhibits an apical cone of electron-dense material and two helicoidal crest-like bodies 100 to 200 nm thick. The cortical microtubules are spiralized and make an angle of about 60 degrees to the spermatozoon axis. The axoneme is of the 9 + "1" pattern and does not reach the posterior extremity of the gamete. The nucleus is a fine, compact cord wound in a spiral which may make as much as two complete coils round the axoneme. The cytoplasm is electron-dense in region V of the spermatozoon. Over the rest of the gamete it is made up of lucent material divided into irregular compartments by electron-dense material. The latter consists of a fine, discontinuous peri-axonemal sheath, a fine granular sub-microtubular layer situated in regions I and II, and irregularly spaced partitions localized in regions III and IV. A nucleus with an annular cross section has never been described in a cestode spermatozoon; nor have two crest-like bodies of different length and thickness. In addition we report for the first time the existence of crest-like bodies in the Davaineidae.  相似文献   

2.
Ultrastructural and immunocytochemical studies were carried out on spermiogenesis in two species of phytophagous bug, Acrosternum aseadum and Nezara viridula. The nucleus development involved changes in the shape and in the degree of chromatin condensation, with specific aggregation patterns of DNA-histone complex occurring during this process. The acrosome showed a three-layered and the acrosomal content a paracrystalline arrangement. The axoneme presented a 9 + 9 + 2 microtubule pattern and bridges occurred between axonemal microtubules 1 and 5, and mitochondrial derivatives. Two paracrystalline structures embedded in amorphous regions were observed in the mitochondrial derivatives. The use of the negative staining technique shows a zig-zag profile in the mitochondria due to infolding to the cristae, regularly spaced with approximately 40 nm. An electron dense rod was observed near the centriolar adjunct; it presented labelling for tubulin suggesting that this structure may be involved in the microtubule organization during spermiogenesis of these insects.  相似文献   

3.
Microtubules are filamentous polar polymers with plus and minus ends. This polarity plays a crucial role in a variety of cellular functions such as chromosome movement and organelle transport. To examine the relationship between the growth polarity of microtubules and guanine nucleotide dependence, we polymerized microtubules from axonemes of sea urchin sperm flagella either with GTP or with GTP and GDP, and observed individual microtubules by dark-field microscopy. Tubulin concentrations were adjusted in each case to grow microtubules from only one end of each axoneme. The growth polarity of microtubules was determined using N-ethylmaleimide-modified tubulin (NEM-tubulin). In the presence of GTP only and at low tubulin concentrations, microtubules grew from the plus ends of axonemes. Surprisingly, in the presence of GTP and GDP, microtubules grew from the minus ends, even at high tubulin concentrations. To confirm these results, we used a perfusion chamber to monitor the growth polarity of microtubules from the same axoneme under different conditions. Exchanging a solution containing only GTP for one containing GTP and GDP elicited a switch in the growth polarity of microtubules from the plus ends to the minus ends. These results suggest that GDP directly affects microtubule polymerization and inverts microtubule growth polarity, probably by inhibiting microtubule growth at the plus ends.  相似文献   

4.
The behavior of centrioles during eupyrene and apyrene meiosis was examined in the silkworm, Bombyx mori, by transmission electron microscopy and indirect immunofluorescence for tubulin. In eupyrene spermatocytes the centrioles, accompanied by axonemes, attached temporarily to the nucleus at diplotene, then detached from the nucleus in diakinesis. After the separation, a beret-shaped structure consisting of a double membrane covered the proximal region of the pair of centrioles. The structure disappeared after breakdown of the nuclear membrane. The centriole, with the axoneme, reattached to the nucleus at telophase I. The process was repeated during meiosis II until the centrioles maintained their nuclear attachment in newly developed spermatids. In stark contrast to their eupyrene counterparts, apyrene spermatocytes were conspicuously devoid of any attachment of the centrioles to the nucleus. These eupyrene-specific and apyrene-specific relationships were consistently and repeatedly found between the nuclear membrane and centrioles, giving rise to suspicion that the behavioral phenomena may be related to differentiation of the dimorphic sperm types.  相似文献   

5.
The distribution of glycylated tubulin has been analyzed in different populations of stable microtubules in a digenean flatworm, Echinostoma caproni (Platyhelminthes). Two cellular types, spermatozoa and ciliated excretory cells, have been analyzed by means of immunofluorescence, immunogold, and immunoblotting techniques using two monoclonal antibodies (mAbs), AXO 49, and TAP 952, specifically directed against differently glycylated isoforms of tubulin. The presence of glycylated tubulin in the two cell types was shown. However, the differential reactivities of TAP 952 and AXO 49 mAbs with the two axoneme types suggest a difference in their glycylation level. In addition, within a single cell, the spermatozoon, cortical microtubules underlying the flagellar membrane, and axonemal microtubules were shown to comprise different tubulin isoforms, the latter ones only being labelled with one of the antiglycylated tubulin mAbs, TAP 952. Similarly, the antiacetylated (6-11B-1) and polyglutamylated (GT335) tubulin mAbs decorated the two types of axonemal microtubules, but not the cortical ones. From these data, a subcellular sorting of posttranslationally modified tubulin isoforms within spermatozoa, on the one hand, and a cellular sorting of glycylated isoforms inside the whole organism, on the other hand, is demonstrated in the flatworm E. caproni. Last, a sequential occurrence of tubulin posttranslational modifications was observed in the course of spermiogenesis. Acetylation appears first, followed shortly by glutamylation; glycylation takes place at the extreme end of spermiogenesis and, specifically, in a proximo-distal process. Thus in agreement with, and extending other studies [Bré et al., 1996], glycylation appears to close the sequence of posttranslational events occurring in axonemal microtubules during spermiogenesis.  相似文献   

6.
Spermiogenesis in Anoplocephaloides dentata begins with the formation of a differentiation zone delimited by a ring of arched membranes. This conical area shows 2 parallel centrioles with associated anterior reduced striated roots but without an intercentriolar body. Only 1 of the centrioles develops an axoneme that grows into a cytoplasmic extension. Two crestlike bodies appear when the nucleus initiates its migration along the spermatid body. We describe for the first time at the end of spermiogenesis the formation of an apical cone before the strangulation of the ring of arched membranes. The mature spermatozoon of A. dentata is filiform, tapered at both ends, and lacks mitochondria. Its anterior extremity has an apical cone measuring about 1,400 x 350 nm and 2 crestlike bodies. Cortical microtubules are spiralled at an angle of about 30 degrees to the spermatozoon axis. The axoneme, of the 9+1 pattern of Trepaxonemata (Polycladida, Seriata, "Typhloplanoida," "Dalyellioida," and Neodermata lacks a periaxonemal sheath and does not reach the extremities of the spermatozoon. Numerous granules of electron-dense material are observed in the posterior regions of each spermatozoon. Analysis of ultrastructural features found during spermiogenesis in A. dentata corroborates the presence of striated roots associated with the centrioles in cyclophyllidean species. Moreover, the presence of striated roots is described for the first time in type IV spermiogenesis.  相似文献   

7.
The membranous outer segments of vertebrate photoreceptors are supported by cytoskeletons consisting of microtubules and associated proteins, which occur as the ciliary axoneme in rods and cones, and as a separate cytoskeletal system at the incisures of rod outer segments. We performed an immunocytochemical study of the cytoskeleton in photoreceptors isolated from amphibian retinas and found that immunoreactivity to the heavy chain of the motor protein kinesin was closely associated with the microtubules in each of these outer segment cytoskeletal systems. In the outer segments of cones, kinesin heavy chain immunoreactivity was confined to a streak at the axoneme that extended to the outer segment tip. In the outer segments of rods, kinesin heavy chain immunoreactivity was found as both a short streak at the axoneme and a series of long parallel lines that coincided with the microtubules at rod outer segment incisures. Our findings constitute the first report of kinesin in the axoneme of cones and at the incisures of rods. Closely associated with microtubules, kinesin in photoreceptor outer segment axonemes and at rod outer segment incisures can transport materials longitudinally along the microtubules and/or connect these with each other and/or with other components. Because these cytoskeletal systems differ in fundamental ways, kinesin can play different roles in each case, e.g., kinesin at rod outer segment incisures can have structural and functional roles that are unique to rods. These findings may have clinical relevance because similar cytoskeletal systems are expected to occur in the outer segments of human photoreceptors; thus, a disturbance involving kinesin in the cytoskeletal systems at photoreceptor axonemes and/or at rod outer segment incisures could interfere with the normal structure and function of photoreceptors and contribute to human photoreceptor degenerations.  相似文献   

8.
We used transgenic analysis in Drosophila to compare the ability of two structurally similar alpha-tubulin isoforms to support microtubule assembly in vivo. Our data revealed that even closely related alpha-tubulin isoforms have different functional capacities. Thus, in multicellular organisms, even small changes in tubulin structure may have important consequences for regulation of the microtubule cytoskeleton. In spermatogenesis, all microtubule functions in the postmitotic male germ cells are carried out by a single tubulin heterodimer composed of the major Drosophila alpha-84B tubulin isoform and the testis-specific beta 2-tubulin isoform. We tested the ability of the developmentally regulated alpha 85E-tubulin isoform to replace alpha 84B in spermatogenesis. Even though it is 98% similar in sequence, alpha 85E is not functionally equivalent to alpha 84B. alpha 85E can support some functional microtubules in the male germ cells, but alpha 85E causes dominant male sterility if it makes up more than one-half of the total alpha-tubulin pool in the spermatids. alpha 85E does not disrupt meiotic spindle or cytoplasmic microtubules but causes defects in morphogenesis of the two classes of singlet microtubules in the sperm tail axoneme, the central pair and the accessory microtubules. Axonemal defects caused by alpha 85E are precisely reciprocal to dominant defects in doublet microtubules we observed in a previous study of ectopic germ-line expression of the developmentally regulated beta 3-tubulin isoform. These data demonstrate that the doublet and singlet axoneme microtubules have different requirements for alpha- and beta-tubulin structure. In their normal sites of expression, alpha 85E and beta 3 are coexpressed during differentiation of several somatic cell types, suggesting that alpha 85E and beta 3 might form a specialized heterodimer. Our tests of different alpha-beta pairs in spermatogenesis did not support this model. We conclude that if alpha 85E and beta 3 have specialized properties required for their normal functions, they act independently to modulate the properties of microtubules into which they are incorporated.  相似文献   

9.
We have previously reported that Sak57 (for Spermatogenic cell/Sperm-associated keratin of molecular mass 57 kDa) is an acidic keratin found in rat spermatocytes, spermatids, and sperm. Sak57 displays conserved amino acid sequences found in the 1A and 2A regions of the alpha-helical rod domain of keratins in human, rat, and mouse. We now report indirect immunofluorescence, confocal laser scanning microscopy and immunogold electron microscopy data showing that Sak57 is associated with the microtubular mantie of the manchette, a transient microtubular structure largely regarded as formed by tubulin and microtubule-associated proteins. The immunocytochemical localization of Sak57 was detected with a polyclonal antiserum to a multiple antigenic peptide (MAP) containing an amino acid sequence known to be present in the 2A region of the alpha-helical rod domain. During spermiogenic steps 8-12, Sak57 immunoreactive sites were restricted to microtubular mantie of the manchette which encircles the spermatid nucleus during shaping and chromatin condensation. At later stages (spermiogenic steps 12-14), Sak57 immunoreactive sites in the spermatid head region disappeared gradually as specific immunoreactivity appeared along the already assembled axoneme of the developing spermatid tail. Immunogold electron microscopy confirmed the presence of Sak57 immunoreactivity among microtubules of the manchette and on outer dense fibers and the longitudinal columns linking the ribs of the fibrous sheath. Mature spermatids (spermiogenic step 19) displayed tails with an immunofluorescent banding pattern contrasting with the lack of Sak57 immunoreactivity in the head region. Results from this study suggest that, during early spermiogenesis, a microtubular-Sak57 scaffolding is associated with the spermatid nucleus during shaping and chromatin condensation. During late spermiogenesis, the dispersion of the manchette coincides with the progressive visualization of Sak57 in the paraaxonemal outer dense fibers and longitudinal columns of the fibrous sheath in the developing spermatid tail.  相似文献   

10.
The distribution of gamma-tubulin as a marker of microtubule organizing centres (MTOC) was studied during spermiogenesis in rodents and in rabbit, monkey and man. A polyclonal antibody directed against human gamma-tubulin was used both for indirect immunofluorescence (IIF) and post-embedding immunogold procedures. In all species, gamma-tubulin was detected in the proximal and distal centrioles of round spermatids. In elongating spermatids, gamma-tubulin was predominantly found in the pericentriolar material (PCM) of both centrioles and particularly around the adjunct of the proximal centriole. At this level, some labelling was also associated with manchette microtubules, but other parts of the manchette and the nuclear ring were never labelled. We propose a role for distal centriole gamma-tubulin in axoneme nucleation and centriolar adjunct gamma-tubulin in manchette nucleation. The disappearance of gamma-tubulin in mature spermatozoa indicates that sperm aster nucleation should be dependent on oocyte gamma-tubulin. Remnants of gamma-tubulin in some human spermatozoa suggest that paternal gamma-tubulin also could contribute to sperm aster formation.  相似文献   

11.
A method for biochemically isolating microtubule-associated proteins (MAPs) from the detergent-extracted cytoskeletons of carrot suspension cells has been devised. The advantage of cytoskeletons is that filamentous proteins are enriched and separated from vacuolar contents. Depolymerization of cytoskeletal microtubules with calcium at 4 degrees C releases MAPs which are then isolated by association with taxol stabilized neurotubules. Stripped from microtubules (MTs) by salt, then dialysed, the resulting fraction contains a limited number of high molecular weight proteins. Turbidimetric assays demonstrate that this MAP fraction stimulates polymerization of tubulin at concentrations at which it does not self-assemble. By adding it to rhodamine-conjugated tubulin, the fraction can be seen to form radiating arrays of long filaments, unlike MTs induced by taxol. In the electron microscope, these arrays are seen to be composed of mainly single microtubules. Blot-affinity purified antibodies confirm that two of the proteins decorate cellular microtubules and fulfil the criteria for MAPs. Antibodies to an antigenically related triplet of proteins about 60-68 kDa (MAP 65) stain interphase, preprophase band, spindle and phragmoplast microtubules. Antibodies to the 120 kDa MAP also stain all of the MT arrays but labelling of the cortical MTs is more punctate and, unlike anti-MAP 65, the nuclear periphery is also stained. Both the anti-65 kDa and the anti-120 kDa antibodies stain cortical MTs in detergent-extracted, substrate-attached plasma membrane disks ('footprints'). Since the 120 kDa protein is detected at two surfaces (nucleus and plasma membrane) known to support MT growth in plants, it is hypothesized that it may function there in the attachment or nucleation of MTs.  相似文献   

12.
The cortical microtubules determine how cellulose microfibrils are deposited in the plant cell wall and are thus important for the control of cell expansion. To understand how microtubules can control microfibril deposition, the components that link the microtubules to the plasma membrane (PM) of plant cells must be isolated. To obtain information on the properties of the tubulin-membrane associations, cauliflower (Brassica oleracea) PM was subjected to Triton X-114 fractionation, and the distribution of alpha- and beta-tubulin was analyzed using immunoblotting. Approximately one-half of the PM-associated tubulin was solubilized by Triton X-114 and 10 to 15% of both alpha- and beta-tubulin was recovered in the detergent phase (indicative of hydrophobic properties) and 30 to 40% was recovered in the aqueous phase. The hydrophobic tubulin could be released from the membrane by high pH extraction with preserved hydrophobicity. A large part of the PM-associated tubulin was found in the Triton-insoluble fraction. When this insoluble material was extracted a second time, a substantial amount of hydrophobic tubulin was released if the salt concentration was increased, suggesting that the hydrophobic tubulin was linked to a high-salt-sensitive protein aggregate that probably includes other components of the cytoskeleton. The hydrophobicity of a fraction of PM-associated tubulin could reflect a direct or indirect interaction of this tubulin with the lipid bilayer or with an integral membrane protein and may represent the anchoring of the cortical microtubules to the PM, a key element in the regulation of cell expansion.  相似文献   

13.
Incubation of excised gills from the bay scallop Aequipecten irradians with 3H-leucine demonstrates that many ciliary structural proteins can attain a degree of labeling approaching that previously reported for sea urchin or surf clam embryos undergoing ciliary turnover or regeneration. This labeling is not a consequence of any predominant incorporation into new cilia at the meristematic growth tips of the gill since tissue regions of varying maturity incorporate label into the same proteins at similar levels, with the most mature region having the highest incorporation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorographic analysis of isolated cilia, separated into detergent-soluble membrane/matrix and detergent-insoluble 9+2 axoneme fractions, reveals that 1) tubulin in the membrane/matrix fraction is labeled whereas tubulin in the axoneme is not; 2) no labeled dynein heavy chains are seen in either fraction; 3) the most heavily labeled axonemal components do not appear to any significant extent in the membrane/matrix fraction; and 4) after thermal depolymerization of the microtubules, nearly all labeled proteins reside in the in-soluble ninefold ciliary remnant, the most prominent being tektin A, an integral component of outer doublet microtubules. Further fractionation of the remnant with sarkosyl-urea to produce tektin filaments demonstrates two solubility classes of tekin A, only the more soluble of which is labeled. Very similar selective architectural protein labeling patterns have been reported for steady-state cilia of sea urchin embryos, and this may indicate a widespread turnover or exchange mechanism characteristic of cilia heretofore considered static.  相似文献   

14.
The major microtubule-associated protein in echinoderms is a 77-kDa, WD repeat protein, called EMAP. EMAP-related proteins have been identified in sea urchins, starfish, sanddollars, and humans. We describe the purification of sea urchin EMAP and demonstrate that EMAP binding to microtubules is saturable at a molar ratio of 1 mol of EMAP to 3 mol of tubulin dimer. Unlike MAP-2, MAP-4, or tau proteins, EMAP binding to microtubules is not lost by cleavage of tubulin with subtilisin. In addition to binding to the microtubule polymer, EMAP binds to tubulin dimers in a 1:1 molar ratio. The abundance of EMAP in the egg suggests that it could function to regulate microtubule assembly. To test this hypothesis, we examined the effects of EMAP on the dynamic instability of microtubules nucleated from axoneme fragments as monitored by video-enhanced differential interference contrast microscopy. Addition of 2.2 microM EMAP to 21 microM tubulin results in a slight increase in the elongation and shortening velocities at the microtubule plus ends but not at the minus ends. Significantly, EMAP inhibits the frequency of rescue 8-fold without producing a change in the frequency of catastrophe. These results indicate that EMAP, unlike brain microtubule-associated proteins, promotes microtubule dynamics.  相似文献   

15.
Tektins, present as three equimolar 47-55 kDa protein components, form highly insoluble protofilaments that are integral to the junctional region of outer doublet microtubules in cilia and flagella. To identify and quantify tektins in other compound microtubules such as centrioles or basal bodies, a rabbit antiserum was raised against tektin filaments isolated from Spisula solidissima (surf clam) sperm flagellar outer doublets and affinity-purified with nitrocellulose blot strips of tektins resolved by SDS- or SDS-urea-PAGE. These antibodies recognized analogous tektins in axonemes of organisms ranging from ctenophores to higher vertebrates. Quantitative immunoblotting established that outer doublet tektins occur in a 1:17 weight ratio to tubulin. Cilia and basal apparatuses were prepared from scallop gill epithelial cells; cilia and deciliated cells were prepared from rabbit trachea. Tektins were detected by immunoblotting in basal body-enriched preparations while tektins were localized to individual basal bodies by immunofluorescence. Supported by greater fluorescence in basal bodies than in adjacent axonemes in tracheal cells, analysis of basal apparatuses demonstrated both a proportionately greater ratio of tektin to tubulin (approximately 1:13) and two distinct solubility classes of tektins, consistent with tektins comprising the B-C junction of triplets in addition to the A-B junction as in doublets.  相似文献   

16.
Ciliary and flagellar movements are explained by active sliding between the outer doublet microtubules of an axoneme via their inner and outer dynein arms. Purealin, a novel bioactive principle of a sea sponge Psammaplysilla purea, blocked the motility of Triton-demembranated sea urchin sperm flagella within 5 min at concentrations above 20 microM. In a similar concentration range, purealin blocked the sliding movement of the flagellar axonemes in vitro within a few minutes judging from the turbidity measurements. The ATPase activity of axonemes was partially inhibited by purealin in a concentration-dependent manner. The maximum inhibition reached approximately 50% at concentrations above 20 microM, indicating that half the axonemal ATPase activity is sensitive to purealin. Similar results were observed on the ATPase activity of outer-arm-depleted axonemes and that of a mixture of 21S dynein and salt-extracted axonemes. On the other hand, ATPase activity of isolated 21S dynein was not inhibited by purealin. The inhibitory action of purealin on the axonemal ATPases was reversed by dilution of purealin. The effect of purealin on the double-reciprocal plot of the ATPase activity as a function of ATP concentrations showed that the inhibition was not a competitive type. In accord with this finding, purealin did not affect the vanadate-mediated UV photocleavage of axonemal dyneins. These results suggest that purealin binds reversibly to a site other than the catalytic ATP-binding site and inhibits half the ATPase activity of axonemes. Taken together, our results suggest that purealin-sensitive ATPase activity of the dynein arms plays an essential role in generating the sliding movement of flagellar axonemes.  相似文献   

17.
Isolated cod (Gadus morhua) brain microtubules were found to have a broad temperature interval for assembly. In contrast to mammalian microtubules they assembled even at as low temperatures as 14 degrees C. Evidence was found that temperature alters the dependency of microtubule-associated proteins (MAPs) for assembly. The assembly was MAPs-dependent at low, but not at higher temperatures. Assembly at +18 degrees C was inhibited by both NaCl and estramustine phosphate. These compounds are well known to inhibit the binding of MAPs to tubulin. At higher temperatures there was no MAPs dependency for assembly, despite that MAPs bound to the microtubules. Cow MAPs had the same effect as cod MAPs, suggesting that despite differences in MAP composition, the effect is not caused by the unusual composition of cod MAPs. The results therefore suggest that these differences in MAPs dependency are due to intrinsic properties of cod tubulin or tubulin-to-tubulin interactions. Small temperature-induced conformational changes of tubulin and a slight enrichment of acetylated and detyrosinated tubulin in microtubules assembled at +30 degrees C as compared to +15 degrees C, were observed. The ability to alter the assembly stimulating effect of MAPs may be important for the cell to regulate microtubule dynamics and stability. In addition, changes in tubulin conformation and composition of tubulin isoforms may reflect adaptations for microtubule assembly at low temperatures.  相似文献   

18.
19.
The superposition of the regular arrangement of tubulin subunits in microtubules gives rise to moiré patterns in cryo-electron micrographs. The moiré period can be predicted from the dimensions of the tubulin subunits and their arrangement in the surface lattice. Although the average experimental moiré period is usually in good agreement with the theoretical one, there is variation both within and between microtubules. In this study, we addressed the origin of this variability. We examined different possibilities, including artefacts induced by the preparation of the vitrified samples, and variations of the parameters that describe the microtubule surface lattice. We show that neither flattening nor bending of the microtubules, nor changes in the subunit dimensions, can account for the moiré period variations observed in 12 and 14 protofilament microtubules. These can be interpreted as slight variations, in the range -0.5 A to +0.9 A, of the lateral interactions between tubulin subunits in adjacent protofilaments. These results indicate that the inter-protofilament bonds are precisely maintained in microtubules assembled in vitro from pure tubulin. The fact that the moiré period is not affected by bending indicates that the local interactions between tubulin subunits are sufficiently stiff to accommodate large deformations of the microtubule wall.  相似文献   

20.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号