首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Fuel》1987,66(10):1321-1325
Liquefaction of Wandoan coal using a 3H labelled tetralin solvent which contains a small amount of 14C labelled naphthalene has been studied at 400 °C under an initial hydrogen pressure of 5.9 MPa, in the presence or absence of NiMoAl2O3 catalyst. The amounts of 3H and 14C transferred from the solvent to the products were measured as liquefaction progressed. The reaction pathways in the presence and absence of the catalyst were discussed and their reaction rate constants were calculated. According to the mass balances of hydrogen and 3H, in the absence of catalyst, tetralin provided coal with hydrogen atoms, and the degree of hydrogen exchange between coal and solvent was small. The catalyst decreased the hydrogen addition from solvent to coal and increased that from gas to coal.  相似文献   

2.
Hydroliquefaction of low-sulfur Australian coals (Wandoan and Yallourn) was studied using iron carbonyl complexes as catalyst. The addition of Fe(CO)5 (2.8 wt% Fe of coal) increased coal conversion from 48.6 to 85.2% for Wandoan coal, and from 36.7 to 69.7% for Yallourn coal in 1-methylnaphthalene at 425°C under an initial hydrogen pressure of 50 kg cm?2. When molecular sulfur was added to iron carbonyls (Fe(CO)5, Fe2(CO)9 and Fe3(CO)12), higher coal converions ( > 92%) and higher oil yields (>46%) were obtained, along with an increase in the amount of hydrogen transferred to coal from the gas phase (0.2 to 2.8%, d.a.f. coal basis). In the liquefaction studies using a hydrogen donor solvent, tetralin, Fe(CO)5S catalyst increased the amount of hydrogen absorbed from the gaseous phase and decreased the amount of naphthalene dehydrogenated from tetralin. The direct hydrogen transfer reaction from molecular hydrogen to coal fragment radicals seems to be a major reaction pathway. Organic sulfur compounds, dimethyldisulfide and benzothiophene, and inorganic FeS2 and NiS were found to be good sulfur sources to Fe(CO)5. From X-ray diffraction analyses of liquefaction residues, it is concluded that Fe(CO)5 was converted into pyrrhotite (Fe1?xS) when sulfur was present, but into Fe3O4 in the absence of sulfur.  相似文献   

3.
The reactions of 2,2′-dinaphthyl ether and diphenyl ether were studied at 375–425°C using 6.9 MPa (cold) hydrogen or nitrogen, 9,10-dihydrophenanthrene (DHP) and decalin as solvents, and a molybdenum sulfide catalyst. We chose to examine these compounds as models for the cleavage of diaryl ether bridges during coal liquefaction. The molybdenum sulfide was added to the reaction as MoS3, which should transform to the active MoS2 catalyst. Cleavage of the CarO in 2,2′-dinaphthyl ether, at reaction temperatures of 375 and 400°C, proceeded in the sequence H2 < DHPN2 < DHPH2 < DHPMoS3N2 < DHPMoS3H2 < MoS3H2 < Dec.MoS3H2. At 425°C, the MoS3H2 and Dec.MoS3H2 systems exchange places in this order. Diphenyl ether is less reactive than dinaphthyl ether toward hydrogenolysis reactions under these conditions. The conversion rate of diphenyl ether increases in the order H2 < DHPH2 < DHPMoS3N2 < DHPMoS3H2 < Dec.MoS3H2 < MoS3H2. Although the rates of conversion of the two ethers are different, the relative effects of using a reactive gaseous atmosphere, donor solvent, catalyst - or some combination of these factors - are the same for both compounds. In liquefaction experiments, hydrogen donor solvent or hydrogen shuttling solvent seems necessary to reduce retrogressive reactions. However, a solvent interacting strongly with catalyst and scavenging hydrogen atoms can reduce the activity of catalysts in hydrocracking reactions.  相似文献   

4.
Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-?400 °C using in situ generated hydrogen via steam reforming of ethanol and the effect of some organic additives was studied for the first time. Four kinds of alumina-based catalysts, i.e. Co?-Mo/Al2O3, Ni-Mo/Al2O3 and their corresponding Pd promoted catalysts Pd-?Co-?Mo/Al2O3 and Pd-?Ni-?Mo/Al2O3, prepared through incipient impregnation method, were used for the desulfurization process. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Experiments showed that organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine can affect the HDS activity of the catalysts in different ways, and only naphthalene is inhibitive for the catalytic activity towards HDS. The results showed that Ni-based catalysts are more active than Co-based ones while Pd shows a high promotion effect. DBT conversion of up to 97% was achieved with Pd-?Ni-?Mo/Al2O3 catalyst at 380 °C temperature and 13 h reaction time. Catalyst systems followed the HDS activity order of: Pd-?Ni-?Mo/Al2O3 > Ni-?Mo/Al2O3 > Pd-?Co-?Mo/Al2O3 > Co?-Mo/Al2O3 at all conditions. Qualitative analysis of the products stream was carried out using GC?-MS technique. The present HDS process using in situ generated hydrogen might be applied as an alternative approach for the catalytic HDS of DBT on industrial level due to its cost effectiveness, mild operating conditions and high activity of the catalysts.  相似文献   

5.
Chee Keung Chow 《Fuel》1981,60(12):1153-1158
The liquefaction behaviour of a Kentucky coal was studied in batch autoclave experiments at 410 °C under either a H2 or a N2 atmosphere (≈ 13.8 MPa) for reaction times of up to 2 h. To understand the catalytic roles of FeSO4 and a Co&z.sbnd;Mo catalyst in coal liquefaction and to assess the feasibility of using FeSO4 as a model for coal pyrites, effects of impregnation of the coal with FeSO4 and direct charges of a Co&z.sbnd;Mo catalyst on coal liquefaction and tetralin dehydrogenation were examined. Both catalysts increase the conversion to benzene-soluble material by 7–10%, and improve the selectivity values for conversion to oil and gas. In addition they are also active in the dehydrogenation of tetralin. The dehydrogenation activities of these catalysts correlate with their catalytic activities during coal liquefaction. Analyses of the mean chemical structures and the product distributions of the coal-derived liquid from liquefaction in H2 and in N2 atmospheres indicate that:
1. (1) H-transfer from tetralin is the only major mechanism of coal liquefaction; and
2. (2) both pyrrhotite, generated in-situ from FeSO4, and Co&z.sbnd; Mo catalyst can provide a major liquefaction mechanism by catalysing the H-transfer from the donor solvent to the coal or the coal-derived liquid.
  相似文献   

6.
The activities of fourteen kinds of catalysts for the hydrocracking of Taiheiyo coal were examined by a high pressure differential thermal analytical method. Exothermic peaks appeared at low temperatures (420–430°C) when MoO3TiO2, NiY zeolite and CoY zeolite were used as catalysts, indicating that these catalysts are highly active compared with other catalysts including MoO3CoOAl2O3. The qualitative analysis of gas and liquid products revealed that MoO3TiO2 and CoY are good catalysts for the liquefaction reaction. The hydrogenation ability of the catalyst is concluded to be more important than its acidic property.  相似文献   

7.
Sirin Methakhup 《Fuel》2007,86(15):2485-2490
Extraction of Mae Moh lignite using toluene-tetralin mixture was performed in a batch reactor at a temperature range from 370 to 490 °C and under initial hydrogen pressure up to 12 MPa. Experiments were carried out to investigate the effects of temperature and initial hydrogen pressure on coal conversion, liquid yield and liquid composition. The effect of catalysts Fe2S3, Fe/Ni and Ni/Mo impregnated into activated carbon was also studied. In the absence of a catalyst, the oil yield decreased with temperature above 410 °C and the content of naphtha and kerosene increased while light gas oil and gas oil decreased with increasing temperature. The presence of catalyst would benefit the formation of lighter components, kerosene and light gas oil. Extraction in the presence of Ni/Mo catalyst, the liquid yield reached 64.6 wt% (daf) which included naphtha 2%, kerosene 72.8%, light gas oil 14.9%, gas oil 2.4% and long residue 7.9%. For GC-MS analysis, the fraction of kerosene was composed of tetralin, naphthalene, dodecamethyl-cycloheptasiloxane, methyl dodecanoate, tetradecamethyl-cycloheptasiloxane, ethyl dodecanoate, methyl tetradecanoate and dibutyl phthalate.  相似文献   

8.
The selective catalytic hydrogenation of naphthalene to high-value tetralin was systematically investigated. A series of Al2O3 catalysts containing different active metals (Co, Mo, Ni, W) were prepared by incipient wetness impregnation. The effects of different active metals forms (oxidation, reduction, sulfuration) and reaction conditions on naphthalene hydrogenation were investigated and the catalysts were characterized by XRD, XPS, BET, NH3-TPD and SEM. Especially, Ni-Mo/Al2O3 was first used in this reactive system. The results show that the oxidative 4%NiO-20%MoO3/Al2O3 is the best catalyst for the preparation of tetralin. The conversion of naphthalene and the selectivity of tetralin can reach 95.62% and 99.75% respectively at 200 °C, 8 h and 6 MPa. Compared with reduced and sulfureted 4%NiO-20%MoO3/Al2O3 catalysts, oxidative 4%NiO-20%MoO3/Al2O3 has a well dispersed and uniform monolayer of the active metals, larger pore volume and size, and larger total acidity. NiO-MoO3/Al2O3 has a synergistic effect between NiO activity and MoO3 selectivity.  相似文献   

9.
Loy Yang brown coal treated with cobalt acetate/ammonium molybdate (Co/Mo) gave lower conversions than the very high values obtained for the same coal treated with nickel acetate/ammonium molybdate (Ni/Mo) when reacted with hydrogen at 400°C. The difference in conversions obtained between the two catalyst systems decreased with increasing time. Addition of sulphur as carbon disulphide (CS2) eliminated the difference between the Co/Mo and Ni/Mo catalyst systems, but neither system was more active than a sulphided Mo catalyst. Addition of a hydrogen donor solvent, tetralin, to a reaction in the absence of sulphur decreased conversion for the Ni/Mo catalysed system, but increased that for the Co/Mo system. The order of activity in reactions without solvent or added sulphur for the coal treated with the individual metals was CoMo < Ni. In the presence of sulphur the order was Co Ni < Mo; the addition of sulphur led to no significant improvement with Co catalysts.  相似文献   

10.
The effect of catalyst pore size has been studied for the hydroliquefaction of a West Virginia coal in the presence of Co/Mo/Al2O3 catalyst. The alumina supports used for catalyst preparation had relatively sharp, unimodal pore size distribution with average pore diameters in the range of 100 Å to almost 1000 Å. Loading of MoO3 and CoO on the Al2O3 supports was in the constant weight ratio of 5:1, but the absolute loading was in direct proportion to the surface area of the support. Two series of catalyst were studied: “High loading”, with 9.7 × 10?4 g MoO3/m2 Al2O3, and “low loading”, with 4.5 × 10?4 g MoO3/m2 Al2O3; both loadings were less than the amount necessary for monolayer distribution of MoO3 on Al2O3. The weight of catalyst charged in each autoclave run was varied so that the same weight of MoO3 and CoO was present for each experiment.The principal results were: (1) Al2O3 alone is not catalytic, even in large amount; (2) conversion of coal increases as catalyst pore diameter increases; from 100 Å to at least 500 Å; (3) the increased conversion with increasing pore size is manifested mainly as increased yield of asphaltenes at 400°C, so the ratio of oil to oil-plus-asphaltenes decreases as pore diameter increases; and (4) catalysts with “low loading” of MoO3 and CoO on the Al2O3 surface give higher liquefactions than their counterparts with “high loading”. Most of the results are consistent with an expected low diffusion rate of large, coal-derived molecules through the catalyst pore system. The higher liquefaction with “low loading” of the Al2O3 surface might result from slow desorption of large product molecules (asphaltenes) exhibiting multiple-site adsorption to Mo neighbors on the surface.  相似文献   

11.
Tritium has been introduced into three coal tar pitches and a naphthalene pitch by two methods, one by isotope exchange with tritiated water using Pt/Al2O3 catalyst, and the other by hydrogenation with tritiated gaseous hydrogen using Ni-Mo/Al2O3 catalyst. The tritium-labelled pitches were carbonized up to 1000°C under nitrogen atmosphere. The release behaviors of hydrogen and tritium during the carbonization of tritiated pitches were investigated by comparing the rates of dehydrogenation and detritiation. The results indicate that the hydrogen introduced into the pitch by the isotope exchange is released more rapidly than the original hydrogen in the pitch while the hydrogen introduced into the pitch by the isotope addition is slightly more difficult to release relative to the original hydrogen in the pitch during the pyrolysis of the pitch. Moreover, it was clarified that the extent of development of optically anisotropic texture of the pitch is related not to the hydrogen exchange ratio but to the rate of hydrogen release during pyrolysis.  相似文献   

12.
Taiheiyo coal was hydrogenated in naphthalene, tetralin and decalin under 10 MPa (initial pressure) of hydrogen or nitrogen with stabilized nickel as catalyst at 400 °C for 15 min. Preasphaltene, asphaltene and oil conversions and the conversion of the solvents were measured. The hydrogen absorbed by coal from molecular hydrogen and from the donor solvent was calculated. The main reaction route appears to be the direct hydrogenation of coal by molecular hydrogen, with the side reaction via solvent by molecular hydrogen occurring only slightly, when an active catalyst such as stabilized nickel is present.  相似文献   

13.
Coal hydrogenation reactions have been investigated using a deuterium tracer method which makes it possible to determine which structural positions in the coal react with hydrogen gas or donor solvent during liquefaction. 2H2 and/or tetralin-d12 were reacted with a Pittsburgh Seam coal at 13.8 to 22.1 MPa and 360 to 425 °C for 0.25 to 1.0 h. Hydrogenation and exchange indices were formulated to indicate the relative contribution of each type of reaction to the total H incorporation. In the coal-deuterium gas system, deuterium incorporation in the solvent-separated products increases in the order oil < asphaltene < preasphaltene < residue. However, in the coal-tetralin-d12-deuterium gas system, deuterium incorporation is similar in each of these four fractions. In both systems, 2H incorporation varies with structural position, with the α-aliphatic positions exhibiting the greatest extent of incorporation. The α-tetralyl radical appears to be an important intermediate in hydrogen transfer to and exchange with the coal. The results indicate that in the donor system the abstraction of hydrogen from the solvent by coal-derived radicals is involved in the rate-determining step of the formation of the soluble products. Evidence indicates that considerable direct interaction of the gas-phase hydrogen with the coal also occurs in the donor solvent system.  相似文献   

14.
Hydrogen was evolved as hydrogen sulphide when coal-derived solvents for liquefaction were heated with sulphur (dehydrogenation method) and their naphthene contents were quantified by titration and 13C n.m.r. analysis to estimate the amount of transferable hydrogen from hydroaromatics present in the solvent. Examination of synthetic solvents consisting of model compounds confirmed the validity of both approaches. The content of transferable hydrogen, thus measured, in the various solvents correlated well with their liquefaction activities using Morwell brown coal. This suggests that the sufficient stabilization of radical fragments derived thermally from the coal at the initial stage of its liquefaction leads to high conversion. It was also shown that the dehydrogenation method was applicable to non-distillable heavy fractions of coal-derived liquids such as SRC which are difficult to measure by n.m.r. because of their limited solubility.  相似文献   

15.
The catalytic activity of metal carbonyl complexes of chromium, molybdenum, tungsten, manganese, iron, cobalt, and nickel in the liquefaction of coal (Illinois No. 6, Wandoan and Mi-ike) was investigated. The carbonyl compounds of molybdenum, tungsten, iron, cobalt, and nickel acted as highly active catalysts for the liquefaction of Illinois No. 6 coal, resulting in high coal conversion (>90%) and high oil yield (>32%), under hydrogen pressure of 50 kg cm?1 in a nonhydrogen-donating solvent at 425°C for 60 min. Among the catalysts surveyed, Mo(CO)6 gave the highest oil yield (57.7%) and the largest amount of hydrogen transferred to coal (3.1 wt.% of d.a.f. coal). However, the molybdenum and tungsten carbonyls did not exhibit high catalytic activity for low sulfur Wandoan coal in the absence of added sulfur. On the other hand, cobalt and nickel carbonyls showed high catalytic activity irrespective of the amount of sulfur in the reaction system. Fe(CO)5Mo(CO)6 binary catalyst promoted hydroliquefaction of Wandoan coal, resulting in increases in oil yield and transfer of hydrogen to coal in the presence of sulfur.  相似文献   

16.
NaOH depolymerized products (SDP) of Shengli lignite was used as lignite-based heavy carbon resources in this study. Hydrotreatment of SDP over Ni–Mo/Al2O3 and Ni–Mo/Zr–Al2O3 catalysts was investigated. It was found that the incorporation of Zr to Ni–Mo/Al2O3 catalyst results in the easy reduction of metal oxides and the increase of the stacking degree and length of MoS2 slabs. Both of Ni–Mo/Al2O3 and Ni–Mo/Zr–Al2O3 catalysts show better performance for hydrogenation of SDP and can be used repeatedly. The incorporation of Zr to Ni–Mo/Al2O3 catalyst significantly inhibits the formation of tetrahydrofuran insolubles (THFI), promotes the formation of two-ring aromatics and increases HS yield compared to that over Ni–Mo/Al2O3 catalyst.  相似文献   

17.
The work reported here represents initial attempts to develop a complete kinetic and mechanistic understanding of the reaction chemistry of H2S under coal liquefaction conditions, using both model systems and coal. Hydrogen sulphide was found to promote/catalyse the transfer of hydrogen from tetralin to 2-hydroxyquinoline (2-HOQ). The presence of H2S can increase the rate of hydrogen transfer from tetralin to 2-HOQ by a factor of 10 compared with the same reaction run in the absence of H2S. The energy of activation for hydrogen transfer was found to decrease by ≈5 kcal mol−1 in the presence of H2S. The presence of H2S was also found to promote loss of oxygen from 2-HOQ to form small amounts of quinoline. No evidence of CC or CN bond cleavage in 2-HOQ was noted under any of the reaction conditions studied. These results suggest that the presence of H2S reduces the temperatures necessary to promote effective hydrogen transfer from tetralin by 50–75 °C. Moreover, they imply that similar effects occur in H2S-promoted coal liquefaction.  相似文献   

18.
For hydrogenation of heavy liquids in direct coal liquefaction residue (DCLR) within the direct coal liquefaction (DCL) process, heavy liquids in a DCLR derived from a bench-scale Shenhua DCL process using Shenhua coal are evaluated under two conditions. One simulates the coal liquefaction conditions of the Shenhua plant in the presence of a Fe-based Shenhua catalyst; the other one simulates the online hydrotreating conditions in the presence of a NiMo/Al2O3 catalyst. The results show that the heavy liquids of DCLR can be hydrogenated under these two conditions yielding less heavy products; hydrogenating the heavy liquids under the online hydrotreating conditions is more effective than that under the coal liquefaction conditions; the preasphaltene fraction is a main problem that yields non-soluble materials under these hydrogenation conditions. The results suggest that hydrogenation of toluene soluble and tetrahydrofuran soluble fractions of the DCLR under the coal liquefaction and online hydrotreating conditions is feasible, but their conversion to lighter products are inapparent under the coal liquefaction conditions, and elimination of the formation of tetrahydrofuran insoluble fraction in the online hydrotreator should be considered.  相似文献   

19.
Direct wood liquefaction of pine sawdust (Pinus radiata) in a hydrogen donor solvent (tetralin), was studied in a 0.5 L autoclave using Co-Mo/γ-Al2O3 and Pt/γ-Al2O3 supported catalysts. Uncatalyzed as well as Raney Nickel catalyzed runs were also performed for comparison purposes. Reaction temperature was kept at 673 K and total system pressure at 10 MPa in all cases. Weight ratio of solvent to solid loaded was 2:1, the gas phase being either H2 or N2. Independent runs were also performed with cellulose and lignin which are the main wood constituents. Reaction products were characterized by means of gas chromatography and solvent fractionation using specific solvents.  相似文献   

20.
Viscosity, infrared, and proton magnetic resonance studies are reported on the SRC II process solvent (before fractionation), and its acid + neutral fraction, and on the interaction of these coal liquids with quinoline and triethylamine. The results obtained with the coal liquids and with several model compounds suggest that hydrogen bonding involving largely phenolic OH and nitrogen-containing bases, OH…N, gives rise to protontransfer complexes, O?pHN, which is in part responsible for the viscosity and non-Newtonian flow of the coal liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号