首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annular flow in annulus geometry is characterized as two liquid films flowing along the inner heated rod and outer unheated wall. Critical heat flux (CHF) occurs when the liquid film on the inner heated wall dries out, while there still exists the liquid film on the outer cold wall. In the safety analysis code, film dryout is calculated by a mechanistic model or CHF table look-up method. The mechanistic film dryout is a complex function of film flow rate, applied heat flux and entrainment/deposition rate, etc. and is determined by the hydrodynamic solution. However, both models were not able to distinguish the liquid films on the cold surface from that on the hot surfaces in a calculation cell, that is, the cold wall effect. This resulted in over-estimation of the calculated CHF in the single-channel modeling of annulus geometry, so it needs a new model that could consider the cold wall effect mechanistically in the single-channel modeling. In order to consider the cold wall effect, a mechanistic film-splitting model look-up table was developed, in which the inner and outer liquid film fractions are solved analytically. The new look-up table was assessed using Wurtz experimental data and was assessed indirectly using several annulus geometry CHF test data.  相似文献   

2.
Critical heat flux (CHF) is an important design factor for boiling two-phase flow equipment, such as boilers and others. In actual boiling systems, the water tube suffers from the nonuniform heating and/or tube inclinations. The objective of this investigation is to understand the influence of tube inclination on CHF characteristics under such high-heat-flux conditions. The experimental investigation was conducted with a forced convective boiling system by using a uniformly heated tube and a nonuniformly heated tube set at arbitrary inclination angles ?. The obtained CHF was strongly influenced by the circumferential location of local maximum heat flux point and tube inclination. In the case of the normal tube, the CHF always occurred by the liquid film dryout at the top of the tube. In the case of the nonuniformly heated tube, the influence of the inclination on the CHF characteristics strongly depended on the circumferential heat flux distribution. When the the heat flux at the bottom was higher than that at the top, two types of CHF mechanism, namely, low-quality CHF upstream of the test section under high-mass-flux condition, and liquid film dryout at the tube exit under low-mass-flux condition, were observed. When the heat flux at the top was higher than that at the bottom, intermittent dryout was observed as the dryout mechanism. These CHF characteristics could be categorized by using the CHF ratio against the value of the vertical upward flow with the modified Froude number, which corresponded to the influence factor of disturbance wave.  相似文献   

3.
The present work is to numerically investigate the effect of heater side factors on the nucleate boiling at high heat flux, which is characterized by the existence of macrolayer. Two-region equations are proposed to study both thermo-capillary driven flow in the liquid layer and heat conduction in the solid wall. The numerical results indicate that the thermo-capillary driven flow in the macrolayer and evaporation at the vapor-liquid interface constitute a very efficient heat transfer mechanism to explain the high heat transfer coefficient of nucleate boiling heat transfer near CHF. For a very thin wall and/or wall with a poor thermal conductivity (heat side factors) are found to have significant effect on flow pattern in the liquid layer and the temperature distribution in the heated wall.  相似文献   

4.
Abstract

This article presents an experimental study to investigate the critical heat flux (CHF) enhancement mechanism using honeycomb porous plate (HPP). The CHF enhanced significantly with combination of the HPP and nanofluid, up to 3.2?MW/m2 at maximum compared to a plain surface, 1.0?MW/m2. The mechanism by which the CHF is improved in this system was elucidated by measuring the temperature of the heated surface using an indium tin oxide (ITO) heater and a high-speed infrared camera. The pool boiling experiment of water and nanofluid is performed under saturated temperature and atmospheric pressure conditions. The CHF values obtained using ITO heater is in good agreement with a conventional CHF pool boiling experiment with HPP attachment. High-speed infrared camera is analyzed to understand the behavior of local temperature at various locations over time. It is observed at the burnout condition, the highest average temperature is occurred at the intersection of HPP wall. Moreover, the reversible dry spots were initiated in the cell part of the HPP, and small dry spots coalesced into a growth of large irreversible dryout that leads to burnout. Further CHF enhancement could be realized if the initiation of the dryout region could be suppressed.  相似文献   

5.
The authors have conducted measurements of liquid–vapor behavior in the vicinity of a heating surface for saturated and subcooled pool boiling on an upward-facing copper surface by using a conductance probe method. A previous paper [A. Ono, H. Sakashita, Liquid–vapor structure near heating surface at high heat flux in subcooled pool boiling, Int. J. Heat Mass Transfer 50 (2007) 3481–3489] reported that thicknesses of a liquid rich layer (a so-called macrolayer) forming in subcooled boiling are comparable to or thicker than those formed near the critical heat flux (CHF) in saturated boiling. This paper examines the dryout behavior of the heating surface by utilizing the feature that a thin conductance probe placed very close to the heating surface can detect the formation and dryout of the macrolayer. It was found that the dryout of the macrolayer formed beneath a vapor mass occurs in the latter half of the hovering period of the vapor mass. Two-dimensional measurements conducted at 121 grid points in a 1-mm × 1-mm area at the center of the heating surface showed that the dryout commences at specific areas and spreads over the heating surface as the heat flux approaches the CHF. Furthermore, transient measurements of wall void fractions from nucleate boiling to transition boiling were conducted under the transient heating mode, showing that the wall void fraction has small values (<10%) in the nucleate boiling region, and then steeply increases in the transition boiling region. These findings strongly suggest that the macrolayer dryout model is the most appropriate model of the CHF for saturated and subcooled pool boiling of water on upward facing copper surfaces.  相似文献   

6.
This study examines both high-flux flow boiling and critical heat flux (CHF) under highly subcooled conditions using FC-72 as working fluid. Experiments were performed in a horizontal flow channel that was heated along its bottom wall. High-speed video imaging and photomicrographic techniques were used to capture interfacial features and reveal the sequence of events leading to CHF. At about 80% of CHF, bubbles coalesced into oblong vapor patches while sliding along the heated wall. These patches grew in size with increasing heat flux, eventually evolving into a fairly continuous vapor layer that permitted liquid contact with the wall only in the wave troughs between vapor patches. CHF was triggered when this liquid contact was finally halted. These findings prove that the CHF mechanism for subcooled flow boiling is consistent with the interfacial lift-off mechanism proposed previously for saturated flow boiling.  相似文献   

7.
This paper presents a methodology for the prediction of the critical heat flux (CHF) for the boiling of water in vertical tubes operating under typical conditions found in steam generators. At the furnace, the water flows through long vertical tubes under an axially non-uniform heat flux and with relatively low mass fluxes. This fact causes that the recent theories and correlations, which have been developed for conditions typically found in nuclear reactors, cannot be directly applied for the prediction of the CHF in the furnace tubes. In this context, the mechanistic theories focused into the CHF prediction have proved their usefulness to predict CHF avoiding the use of correlations and experimental constants. Hence, in order to assist the CHF problem in steam generators, the sublayer dryout theory, initially formulated for CHF in vertical tubes uniformly heated, is extended by combining it with the shape factor method (F-factor), to account for the effects of the axially non-uniform heat flux distribution. The critical wall temperature (CWT) of the tubes is calculated from CHF data. The reliability of the modified theory for the CHF prediction is tested by comparing CWT results against measured data from a steam generator of a power plant. Good consistency and approximation is found between predicted and measured data.  相似文献   

8.
The effects of wall material and surface condition on the behavior of an initial boiling bubble of R113 subjected to transient heating were investigated using a heater with a large heat capacity. The behavior of the initial bubble is closely related to premature transition to film boiling of liquids with high wettability. An initial bubble, which is peculiarly shaped like a “straw hat” and leads to premature transition in saturated liquid nitrogen (as reported in a previous paper), also appears on a heated wall with large heat capacity and grows rapidly to cover the entire wall surface. From the observations using a high-speed video camera, the initial bubble is found to be a coalesced bubble into which small bubbles activated in succession along the heated surface are rolled. The growth rate of the initial bubble along the heated surface is not greatly affected by the thermal conductivity of the wall material but is affected markedly by the surface roughness. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res. 25(1): 51–63, 1996  相似文献   

9.
Heat transfer for flow boiling of water and critical heat flux (CHF) experiments in a half‐circumferentially heated round tube under low‐pressure conditions were carried out. To clarify the flow patterns in the heated section, experiments in the round tube under the same conditions were also carried out, and their results were compared. The experiments were conducted with atmospheric‐pressure water in test sections with inner diameter D = 6 mm, heated length L = 360 mm, inlet water subcooling ΔTin = 80 K, and mass velocity G from 0 to 2000 kg/(m2·s) for the half‐circumferentially heated round tube and from 0 to 7000 kg/(m2·s) for the full‐circumferentially heated tube. The experimental data demonstrated that the wall temperature near the outlet of the half‐circumferentially heated tube remained almost the same until CHF. It was found that burnout occurred when the flow regime changed from churn flow to annular flow, and the liquid film on the heated wall dried out although liquid film on the unheated wall remained. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(3): 149–164, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10022  相似文献   

10.
A new experimental attempt was made to simultaneously observe the dynamic behaviors of bubbles and dry spots in the vicinity of boiling surface. Also, the two-dimensional bubble structures were obtained separately. From the visualization results, the formation of bubbles and dry spots occurs simultaneously. At critical heat flux (CHF), the surface rewetting is repeated by the local nucleate boiling around the large vapor film. At just after CHF, nucleate boiling at the locally wetted region is extinguished, resulting in the dryout of the whole heater surface. Therefore, we conclude that CHF is initiated from the locally limited nucleate boiling activity rather than any hydrodynamic instability.  相似文献   

11.
In water-cooled nuclear reactors, the maximum power which can be extracted from the core is limited by critical heat flux (CHF). CHF in the high-quality region is known as dryout. In advanced nuclear reactors, the coolant flow occurs solely by virtue of natural circulation; however, instabilities may occur during off-normal operations. This may lead to premature dryout due to lower coolant flow rates seen by the heater during such oscillations. This paper describes the experimental investigation on the effect of flow oscillations on the CHF with the time period of 120 s, which is observed typically in the large-scale natural circulation system. Based on observations made with respect to temperature transient, the continuous dryout is preceded by the transient dryout for higher flow oscillations. But as flow fluctuation decreases, the transient dryout phenomenon is found to disappear. The applicability of the look-up table to predict CHF under oscillatory flow conditions using suitable correction factors (CFs) for premature dryout has been evaluated. CFs for the CHF under oscillations suggested by previous authors have been compared. The maximum possible degradation in CHF value suggested by previous authors has been found to agree with the present experimental data. Percentage fluctuation in heat transfer coefficient (HTC) at fully developed annular flow conditions has been evaluated, and it is found that fluctuation in HTC is in phase with the fluctuation in flow.  相似文献   

12.
Experiments were conducted with PF-5052 liquid sprays impacting a 1.0 × 1.0 cm2 heated test surface at different inclination angles, flow rates, and subcoolings. Inclination angle had no noticeable effect on the single-phase or two-phase regions of the boiling curve. Maximum CHF was always achieved with the spray impinging normal to the test surface; increasing angle of inclination away from the normal decreased CHF appreciably. Video analysis showed inclined sprays produced lateral liquid film flow towards the farthest downstream region of the test surface. The film liquid provided partial resistance to dryout despite the weak volumetric spray flux in the downstream region. A new theoretical model of the spray’s impact area and volumetric flux proves this decrease is the result of a sharp reduction in the fraction of the test surface area that is directly impacted by the spray. Combining the model and video results with a previous point-based CHF correlation for normal sprays is shown to accurately predict the effects of orientation angle on CHF for different nozzles and operating conditions.  相似文献   

13.
This study explores the mechanism of flow boiling critical heat flux (CHF) for FC-72 in a 2.5 mm × 5 mm vertical upflow channel that is heated along its 2.5 mm sidewall downstream of an adiabatic development section. Unlike most prior CHF studies, where the working fluid enters the channel in liquid state, the present study concerns saturated inlet conditions with finite vapor void. Temperature measurements and high-speed video imaging techniques are used to investigate the influence of the inlet vapor void on interfacial behavior at heat fluxes up to CHF as well during the CHF transient. The flow entering the heated portion of the channel consists of a thin liquid layer covering the entire perimeter surrounding a large central vapor core. Just prior to CHF, a fairly continuous wavy vapor layer begins to develop between the liquid layer covering the heated wall and the heated wall itself, resulting in a complex four-layer flow consisting of the liquid layer covering the insulated walls, the central vapor core, the now separated liquid layer adjacent to the heated wall, and the newly formed wavy vapor layer along the heated wall. This behavior in captured in a new separated control-volume-based model that facilities the determination of axial variations of thicknesses and mean velocities of the four layers. Incorporating the results of this model in a modified form of the Interfacial Lift-off CHF Model is shown to provide fairly good predictions of CHF data for mass velocities between 185 and 1600 kg/m2 s, evidenced by a mean absolute error of 24.52%.  相似文献   

14.
This paper is the second portion of a two-part study concerning the flow boiling of liquid nitrogen in the micro-tubes with the diameters of 0.531, 0.834, 1.042 and 1.931 mm. The contents include the heat transfer characteristics and critical heat flux (CHF). The local wall temperatures are measured, from which the local heat transfer coefficients are determined. The influences of heat flux, mass flux, pressure and tube diameter on the flow boiling heat transfer coefficients are investigated systematically. Two regions with different heat transfer mechanism can be classified: the nucleate boiling dominated region for low mass quality and the convection evaporation dominated region for high mass quality. For none of the existed correlations can predict the experimental data, a new correlation expressed by Co, Bo, We, Kp and X is proposed. The new correlation yields good fitting for 455 experimental data of 0.531, 0.834 and 1.042 mm micro-tubes with a mean absolute error (MAE) of 13.7%. For 1.931 mm tube, the flow boiling heat transfer characteristics are similar to those of macro-channels, and the heat transfer coefficient can be estimated by Chen correlation. Critical heat flux (CHF) is also measured for the four tubes. Both the CHF and the critical mass quality (CMQ) are higher than those for conventional channels. According to the relationship that CMQ decreases with the mass flux, the mechanism of CHF in micro-tubes is postulated to be the dryout or tear of the thin liquid film near the inner wall. It is found that CHF increases gradually with the decrease of tube diameter.  相似文献   

15.
A simple theory was developed to elucidate the influence of sinusoidal oscillation of the inlet flow rate on the occurrence of liquid film dryout in an annular two-phase flow regime in a boiling channel. The theory assumes that the critical heat flux (CHF) under an oscillatory condition can be calculated from values in steady states provided that the effect of axial mixing of the liquid film is appropriately considered. The trends of CHFs calculated using a one-dimensional three-fluid model and those experimentally measured under atmospheric pressure were in reasonable agreement with the proposed theory. However, the CHF values measured under oscillatory conditions were usually higher in the experiment than in the numerical simulation, which indicated that axial liquid transport induced by disturbance waves might enhance axial mixing of the liquid film.  相似文献   

16.
This paper presents a non-heating experimental method that simulates the critical heat flux (CHF) phenomenon in pool boiling. In the experiments, with providing controlled air flow through the holes on a plate submerged in a pool of water, the liquid sublayer (macrolayer) thickness and bubble departure frequency have been successfully measured by a conductance probe. The CHF is reasonably predicted by applying the measured parameters to a liquid macrolayer dryout model. The measured trends of the macrolayer thickness and bubble departure frequency with air mass flux are also consistent with the present understanding. As a result of this experimental study, it is expected that the non-heating method would be useful to investigate the various parametric effects on pool and flow boiling CHF, with avoiding the difficulty in heating and large electric power requirement even for complex geometries.  相似文献   

17.
This study explores the mechanism of flow boiling critical heat flux (CHF) in a 2.5 mm × 5 mm horizontal channel that is heated along its bottom 2.5 mm wall. Using FC-72 as working fluid, experiments were performed with mass velocities ranging from 185–1600 kg/m2s. A key objective of this study is to assess the influence of inlet vapor void on CHF. This influence is examined with the aid of high-speed video motion analysis of interfacial features at heat fluxes up to CHF as well as during the CHF transient. The flow is observed to enter the heated portion of the channel separated into two layers, with vapor residing above liquid. Just prior to CHF, a third vapor layer begins to develop at the leading edge of the heated wall beneath the liquid layer. Because of buoyancy effects and mixing between the three layers, the flow is less discernible in the downstream region of the heated wall, especially at high mass velocities. The observed behavior is used to construct a new separated three-layer model that facilitates the prediction of individual layer velocities and thicknesses. Combining the predictions of the new three-layer model with the interfacial lift-off CHF model provides good CHF predictions for all mass velocities, evidenced by a MAE of 11.63%.  相似文献   

18.
Experiments were performed to evaluate the evaporative heat transfer characteristics of spray cooling of water on plain and micro-structured silicon surfaces at very low spray mass fluxes. The textured surface is made of an array of square micro-studs. It was found that the Bond number of the microstructures is the primary factor responsible for the heat transfer enhancement of evaporative spray cooling on micro-structured silicon surface in the present study. A qualitative study of evaporation of a single water droplet on plain and textured silicon surface shows that the capillary force within the microstructures is effective in spreading the deposited liquid film, thus increasing the evaporation rates. Four distinct heat transfer regimes, which are the flooded, thin film, partial dryout, and dryout regimes, were identified for evaporative spray cooling on micro-structured silicon surfaces. The microstructures provided better cooling performance in the thin film and partial dryout regime and higher liquid film breakup heat flux, because more water was retained on the heat transfer surface due to the capillary force. Heat transfer coefficient and temperature stability deteriorated greatly once the liquid film breakup occurred. The liquid film breakup heat flux increases with the Bond number. Effects of surface material, system orientation and spray mass flux were also addressed in this study.  相似文献   

19.
Extensive experimentation was performed to obtain flow boiling critical heat flux data in single stainless steel microtubes with diameters from 0.286 to 0.700 mm over a wide range of mass fluxes, inlet subcoolings, and exit pressures for two different working fluids (water and R-123). The effect of different operating parameters – mass flux, inlet subcooling, exit quality, heated length and diameter – were assessed in detail (Part I of the paper). The conventional DNB-type behavior is observed in the high subcooled region, and the typical dryout type behavior is seen in the high-quality saturated region when the flow is completely annular. The flow in transitional flow patterns (churn–annular or slug–annular) causes a peculiar increase of CHF with exit quality. Also, the increased void fraction near the saturated region in subcooled boiling results in increased subcooled CHF values. Part II of the paper deals with comparison of data with existing correlations and development of a new correlation to predict the CHF condition in the subcooled liquid region.  相似文献   

20.
High-QualityCriticalHeatFluxinHorizontallyCoiledTubesWeiminMa;MingyuanZhang;XuejunChen(StateKeyLaboratoryofMultiphaseFlowinPo...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号