首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Broadband CPW fed stacked patch antenna   总被引:1,自引:0,他引:1  
A broadband CPW fed stacked patch antenna well suited for integration with monolithic and optical integrated circuits is presented. The antenna is designed with a bandwidth of 40% on a high dielectric constant feed substrate. The predicted and measured input impedance and far field radiation patterns are given  相似文献   

2.
A cylindrical dielectric resonator antenna fed by a microstripline is studied. By connecting a vertical strip at the end of the microstripline, the input matching of a dielectric resonator antenna can be improved substantially. Moreover, it offers an impedance bandwidth as wide as 19% and a stable radiation pattern across the operating frequency range  相似文献   

3.
A double-folded slot antenna (DFS) has been designed, fabricated, and tested at 90-100 GHz. The antenna shows a very wideband impedance around 20 Ω from 85 to 110 GHz. The low impedance is compatible with superconductor-insulator-superconductor (SIS) junctions, Schottky diodes or high electron mobility transistor (HEMT) amplifiers, which require a low impedance at millimeter wave frequencies. The antenna is placed on a dielectric lens to synthesize a semi-infinite substrate and realize high-directivity patterns. The measured radiation patterns agree very well with theoretical calculations and demonstrate symmetric main beams and sidelobe levels below -15 db over a 10% bandwidth. The double folded slot antenna is an attractive candidate for low-cost wideband millimeter-wave monolithic microwave integrated circuits (MMIC) front ends  相似文献   

4.
A printed compact coplanar waveguide fed triangular slot antenna for ultra wide band (UWB) communication systems is presented. The antenna comprises of a triangular slot loaded ground plane with a T shaped strip radiator to enhance the bandwidth and radiation. This compact antenna has a dimension of 26 mm × 26 mm when printed on a substrate of dielectric constant 4.4 and thickness 1.6 mm. Design equations are implemented and validated for different substrates. The pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity and virtually steady group delay. The simulation and experiment reveal that the proposed antenna exhibits good impedance match, stable radiation patterns and constant gain and group delay over the entire operating band.  相似文献   

5.
A cavity-backed loop antenna is developed for producing broadband circularly polarized (CP) radiation. The antenna configuration consists of a slot loop and a strip loop. The slot loop radiates a CP wave at a lower frequency while the strip loop produces CP radiation at a higher frequency. A combination of the two frequencies leads to a bandwidth enhancement. The slot/strip loop antenna is fed by a single straight microstrip line. It is demonstrated that the cavity-backed slot/strip loop antenna can achieve an axial ratio (les 3 dB) bandwidth of 19% with good impedance matching. The antenna configuration is described and the operating principles for broadband circular polarization and impedance matching are analyzed. The antenna performance is confirmed by experimental results.  相似文献   

6.
A low-profile antenna, with horizontally-polarised radiation similar to a dipole antenna with a reflector in proximity, is presented for application in unmanned aerial vehicles (UAVs). The antenna has a simple structure comprising two folded strips (a radiating strip and a feeding strip). Resonance and impedance matching is achieved by adjusting the capacitive loads located at the ends of the radiating strip and adjusting the coupling of the feeding strip to the radiating strip. A prototype with height of 30 mm (0.05 ) and a lateral size of 160 50 mm2 (0.27times0.083 times2) is implemented, which shows that an impedance bandwidth of 11 MHz (500 511 MHz) within 2.0:1 VSWR and good radiation performance are obtained.  相似文献   

7.
A broad-band U-slot rectangular patch antenna printed on a microwave substrate is investigated. The dielectric constant of the substrate is 2.33. The antenna is fed by a coaxial probe. The characteristics of the U-slot patch antenna are analyzed by the finite-difference time-domain (FDTD) method. Experimental results for the input impedance and radiation patterns are obtained and compared with numerical results. The maximum impedance bandwidth achieved is 27%, centered around 3.1 GHz, with good pattern characteristics  相似文献   

8.
A dual band substrate integrated waveguide H plane sectoral horn antenna with reconfigurable radiation characteristics has been proposed in this paper. Designed antenna acts as a perfect broadside radiator at 16.1 GHz and perfect endfire radiator at 14.4 GHz frequency. Broadside radiation has been achieved by etching rectangular slots in the flared section of horn exhibiting a gain of 8.87 dBi. To achieve perfect endfire radiation, dielectric loading is done at the edge of horn and at this frequency antenna shows a gain of 11.3 dBi. The horn and the loaded dielectric are integrated by using the same single substrate resulting in easy fabrication and low cost. The proposed design has been fabricated and measured results are in good agreement with the simulated results.  相似文献   

9.
An analytical program for calculating the field distribution about a microstrip transmission line bounded by a shielding wall is used to calculate the impedance, velocity, and attenuation parameters. The program input parameters are the dimensions of the strip and shielding wall and the relative dielectric constant of the substrate material. The field distribution about the strip is integrated to find the charge density on the strip and walls with and without the dielectric substrate. From these two calculations, the relative velocity and impedance can be calculated.  相似文献   

10.
An analytical program for calculating the field distribution about a microstrip transmission line bounded by a shielding wall is used to calculate the impedance, velocity, and attenuation parameters. The program input parameters are the dimensions of the strip and shielding wall and the relative dielectric constant of the substrate material. The field distribution about the strip is integrated to find the charge density on the strip and walls with and without the dielectric substrate. From these two calculations, the relative velocity and impedance can be calculated.  相似文献   

11.
An analytical program for calculating the field distribution about a microstrip transmission line bounded by a shielding wall is used to calculate the impedance, velocity, and attenuation parameters. The program input parameters are the dimensions of the strip and shielding wall and the relative dielectric constant of the substrate material. The field distribution about the strip is integrated to find the charge density on the strip and walls with and without the dielectric substrate. From these two calculations, the relative velocity and impedance can be calculated.  相似文献   

12.
A coplanar waveguide consists of a strip of thin metallic film on the surface of a dielectric slab with two ground electrodes running adjacent and parallel to the strip. This novel transmission line readily lends itself to nonreciprocal magnetic device applications because of the built-in circularly polarized magnetic vector at the air-dielectric boundary between the conductors. Practical applications of the coplanar waveguide have been experimentally demonstrated by measurements on resonant isolators and differential phase shifters fabricated on low-loss dielectric substrates with high dielectric constants. Calculations have been made for the characteristic impedance, phase velocity, and ripper bound of attenuation of a transmission line whose electrodes are all on one side of a dielectric substrate. These calculations are in good agreement with preliminary experimental results. The coplanar configuration of the transmission system not only permits easy shunt connection of external elements in hybrid integrated circuits, but also adapts well to the fabrication of monolithic integrated systems. Low-loss dielectric substrates with high dielectric constants may be employed to reduce the longitudinal dimension of the integrated circuits because the characteristic impedance of the coplanar waveguide is relatively independent of the substrate thickness; this may be of vital importance for Iow-frequency integrated microwave systems.  相似文献   

13.
This paper presents for the first time the design and performance of a novel integrated dielectric resonator antenna fabricated on a high conducting silicon substrate for system on-chip applications. A differential launcher to excite the ${rm TE}_{01delta}$ mode of the high permittivity cylindrical dielectric resonator was fabricated using the IBM SiGeHP5 process. The proposed antenna integrated on a silicon substrate of conductivity 7.41 S/m has an impedance bandwidth of 2725 MHz at 27.78 GHz, while the achieved gain and radiation efficiency are 1 dBi and 45% respectively. The design parameters were optimized employing Ansoft HFSS simulation software. Very good agreement has been observed between simulation and experimental results. The results demonstrate that integration of dielectric resonator antennas on silicon is viable, leading to the fabrication of high efficient RF circuits, ultra miniaturization of ICs and for the possible integration of active devices.   相似文献   

14.
李晓东 《电子科技》2013,26(10):142-144
提出了一种新型的用于WLAN/WiMAX通信系统的双频带印刷单极天线。通过改进的叉子形的辐射贴片,使天线在2.4 GHz频带内谐振。同时,在介质基板背面的引入寄生辐射贴片,利用与正面的辐射贴片的耦合效应,使天线谐振在5 GHz频带内。最终使得天线可以覆盖2.4/5.2/5.8 GHz WLAN 和5.5 GHz WiMAX频带。对加工后的天线模型测试表明,天线在工作频带内具有较好的全向辐射特性和可观的增益。因此,该天线在无线多频带通信系统中具有广泛的应用前景。  相似文献   

15.
A circularly polarized quadruple strip feed cylindrical dielectric resonator antenna utilizing a pair of 90deg hybrid couplers is investigated experimentally. The antenna is shown to deliver an impedance bandwidth (S11 < -10 dB) of 34.5%, from 1.75 to 2.48 GHz, and an axial-ratio bandwidth (AR < 3 dB) of 25.9%, from 1.65 to 2.14 GHz. The gain and radiation patterns are found to be stable within the passband.  相似文献   

16.
Analysis of a printed wire loop antenna   总被引:2,自引:0,他引:2  
The current distribution and radiation pattern of a printed thin-wire circular loop antenna are computed rigorously using an entire-domain moment method analysis. A computationally efficient algorithm using the FFT is implemented. The input impedance of the loop and the far-zone radiation pattern are computed as a function of the substrate dielectric constant and thickness and as a function of the loop circumference. The space-wave launching efficiency and z-directed power gain of the antenna are also computed as a function of the substrate thickness  相似文献   

17.
An electric field integral equation method is applied to a metal strip antenna on an electrically thick dielectric substrate of finite size in a uniform infinite array environment. An efficient solution is found using the method of moments. Metal strip folded dipole antennas are analyzed both with and without a coplanar strip feed line, and the effects of the substrate and feed line are investigated. A technique for minimizing the effect of feed line scattering is presented, and arrays of these elements are shown to be capable of good scanning performance over a wide range of beam-steer angles. A phased array simulator experiment is described and the measured results show good agreement with those obtained by analysis. The class of antenna elements studied may be fabricated using monolithic microwave integrated circuit (MMIC) technology, and the analysis described illustrates the expected characteristics for millimeter-wavelength phased arrays of this type  相似文献   

18.
This paper describes the fundamental theory of line source radiation from a source on a dielectric slab backed by a metal-strip grating. A continuous phased-array (CPA) method is applied to treat the analytic and numerical problems of antenna interaction with periodic structures. Both TE and TM mode cases for a one-dimensional strip grating are investigated. It is found that the strip grating on the dielectric surface may result in surface wave elimination and may also be used to support leaky waves. It is shown that high-efficiency and high-gain antennas on a dielectric substrate are possible with such metal-strip gratings  相似文献   

19.
A method for increasing the bandwidth of microstrip antenna arrays by using gap-coupled patches is described. The input impedance properties of gap-coupled patches are analyzed by the use of the spectral dyadic Green's function for a grounded dielectric slab and the moment method. The dependence of different parameters such as s, L and ϵr on the impedance characteristics is investigated. In considering the effect of feed network, the impedance bandwidth for a VSWR<2 of two-element gap-coupled patch array is as large as 2.5 times that of an ordinary array. The radiation patterns over this bandwidth are measured and discussed. All the microstrip antenna arrays are fabricated on a substrate with ϵr=2.86, h=1.5 mm. A comparison of theoretical and experimental results for both input impedance and radiation patterns are given  相似文献   

20.
提出了一种基于双层结构的双频滤波天线,工作在n77/n78/n79频段。该天线由上层基板的2个矩形辐射贴片和下层基板的阶跃阻抗谐振器、2个“L”型枝节组成。2块介质基板材料均为FR4,且通过探针相连。上层介质基板上的2个矩形辐射贴片激发2个谐振模式,其中高频谐振用于形成n79频段,低频谐振用于形成n77/n78频段。为了获得双通带滤波效果,在下层介质基板中引入阶跃阻抗谐振器,在2个频段间形成带外辐射零点。此外,下层基板上的“L”型枝节可以引入额外的谐振点来扩大天线的带宽。该结构经过高频仿真软件(HFSS)优化,其仿真结果和测试结果均在3.37~3.53 GHz(n77/n78),4.55~4.64 GHz(n79)2个频段范围内,可用于6 GHz以下5G的无线通信应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号