首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
综述了锂离子电池正极材料的工作原理、应具备的结构与性质以及目前最具有吸引力的三种正极材料LiCoO2、LiNiO2、LiMn2O4。通过比较这三种正极材料的制备方法和电化学性能,讨论了这些材料存在的问题和相应的解决方法。  相似文献   

2.
锂离子电池正极材料LiNixFe1-xPO4的制备及其性能   总被引:2,自引:0,他引:2  
为提高锂离子电池正极材料LiFePO4的充放电性能,用Ni对LiFePO4进行掺杂,研究了Ni掺杂量对LiFePO4性能的影响,在LiNixFe1-xPO4(x=0,0.01,0.03,0.05,0.10)材料中,LiNi0.03Fe0.97PO4具有比LiFePO4更好的电化学性能,用80mA/g的电流进行充放电时,第2次放电比容量为133.278mAh/g,循环20次后为127.655mAh/g.  相似文献   

3.
锂离子电池三元正极材料[Li-Ni-Co-Mn-O]的研究进展   总被引:2,自引:1,他引:1  
从制备性能、改性和安全性能3个方面,论述了锂离子电池三元正极材料[Li-Ni-Co-Mn-O]的研究现状,指出了其产业化所面临的问题,并给出了相应的对策.  相似文献   

4.
层状镍钴锰复合材料LiNixCoyMnzO2具有比商业化锂离子电池正极材料——Li-CoO2低廉的成本、更低的毒性、更好的热稳定性,近年来受到广大科研工作者的关注.本文重点介绍了近年来层状镍钴锰复合正极材料合成方法及掺杂、包覆改性方面的研究成果,并简要概括了目前存在的问题及材料未来的研究趋势.  相似文献   

5.
锂离子电池正极材料LiMn2O4掺杂及对其性能的影响   总被引:1,自引:0,他引:1  
综述了近年来掺杂锂离子正极材料尖晶石LiMn2O4的元素及方法,阐述了在锂离子正极材料LiMn2O4中掺杂钴、铬、镍、铝、稀土、钒后对材料性能的影响.结果表明,掺杂均不同程度地改善材料的循环稳定性,但对容量大都产生不利影响.  相似文献   

6.
废旧锂离子电池含有大量的钴、铜等紧缺有色金属元素和六氟磷酸锂等有毒有害物质,必须对其进行资源化回收及无害化处理,本文采用“拆解→NMP浸泡正极材料→钴酸锂粉末的浸出→P204萃取除杂→P507萃取分离钴、锂离子”流程处理废旧锂离子电池,获得了合格的氯化钴溶液,该工艺的特点在于:正极片中的铝箔以单质形态回收,而正极材料中97.33%的钴以氯化钴的形式回收,成功地实现了锂离子电池正极材料中有色金属的分离与回收利用。  相似文献   

7.
废旧锂离子电池正极材料回收工艺研究   总被引:3,自引:0,他引:3  
废旧锂离子电池含有大量的钴、铜等紧缺有色金属元素和六氟磷酸锂等有毒有害物质,必须对其进行资源化回收及无害化处理.本文采用"拆解→NMP浸泡正极材料→钴酸锂粉末的浸出→P204萃取除杂→P507萃取分离钴、锂离子"流程处理废旧锂离子电池,获得了合格的氯化钴溶液.该工艺的特点在于:正极片中的铝箔以单质形态回收,而正极材料中97.33%的钴以氯化钴的形式回收,成功地实现了锂离子电池正极材料中有色金属的分离与回收利用.  相似文献   

8.
介绍了锂离子电池NCM三元正极材料的发展背景、结构特点以及研究现状,分析和对比了不同体系的NCM三元材料的结构和性能。对NCM三元材料的制备工艺、改性方法、工业化进程进行了概括和举例说明。最后对NCM三元材料的发展方向和应用前景进行了展望。  相似文献   

9.
10.
锂离子电池正极材料LiNi0.8Co0.2O2的合成及性能研究   总被引:1,自引:0,他引:1  
以硝酸盐和淀粉为原料,采用溶胶-凝胶方法合成LiNi0.8Co0.2O2锂离子电池正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明,合成材料为单一晶相的α-NaFeO2型层状结构,颗粒小且分布均匀,在电压为2.75~4.50 V (vs. Li+/Li) 范围内,以0.2 mA/cm2电流密度下经恒电流充放电测试,其首次放电比容量为183.1 mAh/g,经过50周充放电循环后放电比容量为171.3 mAh/g,表现出较大的初始放电比容量和良好的循环性能。  相似文献   

11.
介绍了LiNiO2合成法及其掺杂研究进展,通过对LiNiO2目前存在的问题。阐述了改进的两种途径并探索新的合成方法和掺杂改性。  相似文献   

12.
利用相转移法合成了LiMgxMn2-xO4前驱体,在电炉中于一定温度下烧结一定时间,得到锂离子电池正极材料粉体,并利用XRD、SEM、IR等对材料粉体进行结构形态表征.考察焙烧温度、焙烧时间、Mg的掺杂含量等对产物结构和电化学性能的影响.实验结果表明:当Mg的掺杂量x=0.06,于750℃焙烧15 h时所制备的样品材料结构稳定且呈尖晶石型,样品电极的充放电性能良好,首次放电比容量达125 mAh/g,放电平稳,样品电极可逆循环性能良好.  相似文献   

13.
钛酸锂因零应变特性已成为性能优异的锂离子电池负极材料,但导电性差和锂离子扩散率低等问题限制了其广泛应用.在介绍钛酸锂主要制备方法的基础上综述了国内外对于该材料作为锂离子电池负极材料的改性方法,包括体相内的金属离子掺杂、碳包覆和氮化处理等表面改性手段以及材料粒子的大小和形貌控制等.除了体相内锂位的掺杂对材料性能提升不明显外,导电层包覆和颗粒纳米化对材料性能都有较大的提高,因此对于钛酸锂体相内氧位或锂位的掺杂是比较有价值的研究方向.要同时提高材料的离子导电率和电子导电率必须从多个方面综合考虑和设计.  相似文献   

14.
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the c1 space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0μm. During the Li ion chemical intercalation, radical P2O4-O7 is disrupted into two PO3-4 ions in the presence of O2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.  相似文献   

15.
通过乳液聚合制备了一种水性丙烯酸酯类锂电池电极用黏合剂.采用刮刀法将黏合剂与活性材料、导电助剂、增稠剂混合后涂覆于铜箔表面,制成锂电池用电极.研究了功能单体丙烯酸和甲基丙烯酸β羟乙酯的不同比例以及聚合温度对黏合剂性能的影响.利用傅里叶变换红外光谱、热重分析、电化学工作站等分析方法对水性丙烯酸酯黏合剂进行了结构表征和电化...  相似文献   

16.
17.
18.
Graphene was produced via a soft chemistry synthetic route for lithium ion battery applications. The sample was characterized by X-ray diffraction, nitrogen adsorption-desorption, field emission scanning electron microscopy and transmission electron microscopy, respectively. The electrochemical performances of graphene as anode material were measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The experimental results showed that the graphene possessed a thin wrinkled paper-like morphology and large specific surface area (342 m2·g?1). The first reversible specific capacity of the graphene was as high as 905 mA·h·g?1 at a current density of 100 mA·g?1. Even at a high current density of 1000 or 2000 mA·g?1, the graphene maintained good cycling stability, indicating that it is a promising anode material for high-performance lithium ion batteries.  相似文献   

19.
Binary carbon mixtures, carbon black ECP 600JD(ECP) combined with vapor grown carbon fiber(VGCF) or carbon nanotube(CNT), or graphene(Gr) in different mass ratios, are investigated as the conductive additives for the cathode material polyoxomolybadate Na_3[AlMo_6O_(24)H_6](NAM). Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy show that the surfaces of NAM particles are covered homogeneously with the binary conductive additive mixtures except the combination of ECP and CNT. The optimum combination is the mixture of ECP and VGCF, which shows higher discharge capacity than the combinations of ECP and CNT or Gr. Initial discharge capacities of 364, 339, and 291 m A·h/g are obtained by the combination of ECP and VGCF in the mass ratios of 2:1, 1:1, and 1:2, respectively. The results of electrochemical impedance spectra and 4-pin probe measurements demonstrate that the combination of ECP and VGCF exhibits the highest electrical conductivity for the electrode.  相似文献   

20.
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号