首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 36 毫秒
1.
图像检测、识别任务已经被应用在越来越多的生产生活场景中,基于卷积神经网络的方法凭借着精度高的特点被广泛应用.但是卷积神经网络存在着权重参数多、对算力要求高的问题,算力有限且型号多样的边缘计算设备使得这些应用在使用中受限.在跨平台上运行高性能代码,以及基于GPU的卷积神经网络优化愈发重要.针对卷积神经网络中的卷积规模和其他通用矩阵乘(general matrix multiplication, GEMM)方法的不足,根据分块规模、分支执行、访存和计算比例,提出了一种针对卷积神经网络规模优化的GEMM优化方法,将其应用于Winograd算法,并结合算子合并,实现对卷积进一步优化.同时基于遍历的自调优选择性能最优的卷积算子,结合离线编译、内存池、16 b量化、网络规模裁剪等方法,来提升卷积神经网络的性能.最后在AMD V1605B平台上进行实验验证算法的效果,通过和其他GEMM算法以及深度学习网络的性能进行对比,验证了该方法能够获得比GEMM算法和Winograd算法更好的加速效果,并能有效地加速卷积神经网络.  相似文献   

2.
袁良  张云泉  龙国平  王可  张先轶 《软件学报》2010,21(Z1):251-262
近年来在生物计算,科学计算等领域成功地应用了GPU 加速计算并获得了较高加速比.然而在GPU 上编程和调优过程非常繁琐,为此,研究人员提出了许多提高编程效率的编程模型和编译器,以及指导程序优化的计算模型,在一定程度上简化了GPU上的算法设计和优化,但是已有工作都存在一些不足.针对GPU低延迟高带宽的特性,提出了基于延迟隐藏因子的GPU 计算模型,模型提取算法隐藏延迟的能力,以指导算法优化.利用3 种矩阵乘算法进行实测与模型预测,实验结果表明,在简化模型的情况下,平均误差率为0.19.  相似文献   

3.
为了评估数据并行(DLP)应用并行化后在GPU体系结构上的执行性能,针对OpenCL架构提出一种GPGPU量化性能模型.该模型充分考虑了影响GPGPU程序性能的各种因素:全局存储器访问、局部存储器访问、计算与访存重叠、条件分支转移和同步.通过对DLP应用的静态分析并设定具体的OpenCL执行配置,在无需编写实际GPGPU程序的前提下采用该模型即可估算出DLP应用在GPU体系结构上的执行时间.在AMD RadeonTM HD 5870 GPU和NVIDIA GeForceTM GTX 280 GPU上对矩阵乘法与并行前缀和的分析与实验结果表明:该性能模型能够相对准确地评估DLP应用并行化后的执行时间.  相似文献   

4.
董晓  刘雷  李晶  冯晓兵 《软件学报》2020,31(9):2944-2964
近些年来,深度卷积神经网络在多项任务中展现了惊人的能力,并已经被用在物体检测、自动驾驶和机器翻译等众多应用中.但这些模型往往参数规模庞大,并带来了沉重的计算负担.神经网络的模型剪枝技术能够识别并删除模型中对精度影响较小的参数,从而降低模型的参数数目和理论计算量,给模型的高效执行提供了机会.然而,剪枝后的稀疏模型却难以在GPU上实现高效执行,其性能甚至差于剪枝前的稠密模型,导致模型剪枝难以带来真正的执行性能收益.提出一种稀疏感知的代码生成方法,能够生成高效的稀疏卷积GPU程序.首先为卷积算子设计了算子模板,并结合GPU的特点对模板代码进行了多种优化.算子模板中的源代码经过编译和分析被转换为算子中间表示模板,设计了一种稀疏代码生成方法,能够结合剪枝后的稀疏参数,基于中间表示模板生成对应的稀疏卷积代码.同时,利用神经网络执行过程中的数据访问特点对数据的访问和放置进行了优化,有效提升了访存吞吐量.最后,稀疏参数的位置信息被隐式编码在生成的代码中,不需要额外的索引结构,降低了访存需求.在实验中证明了:相对于GPU上已有的稀疏神经网络执行方法,提出的稀疏感知的代码生成方法能够有效提升稀疏卷积神经网...  相似文献   

5.
大数据计算中存在流计算、内存计算、批计算和图计算等不同模式,各种计算模式有不同的访存、通信和资源利用等特征。GPU异构集群在大数据分析处理中得到广泛应用,然而缺少研究GPU异构集群在大数据分析中的计算模型。多核CPU与GPU协同计算时不仅增加了计算资源的密度,而且提高节点间和节点内的通信复杂度。为了从理论上研究GPU与多核CPU协同计算问题,面向多种计算模式建立一个多阶段的协同计算模型(p-DCOT)。p-DCOT以BSP大同步并行模型为核心,将协同计算过程分成数据层、计算层和通信层三个层次,并且延用DOT模型的矩阵来形式化描述计算和通信行为。通过扩展p-DOT模型描述节点内和节点间的协同计算行为,细化了负载均衡的参数并证明时间成本函数,最后用典型计算作业验证模型及参数分析的有效性。该协同计算模型可成为揭示大数据分析处理中协同计算行为的工具。  相似文献   

6.
张峰  翟季冬  陈政  林甲灶  杜小勇 《软件学报》2020,31(8):2603-2624
随着异构计算技术的不断进步,CPU和GPU等设备相集成的异构融合处理器在近些年得到了充分的发展,并引起了学术界和工业界的关注.将多种设备进行集成带来了许多好处,例如,多种设备可以访问同样的内存,可以进行细粒度的交互.然而,这也带来了系统编程和优化方面的巨大挑战.充分发挥异构融合处理器的性能,需要充分利用集成体系结构中共享内存等特性;同时,还需结合具体应用特征对异构融合处理器上的不同设备进行优化.首先对目前涉及异构融合处理器的研究工作进行了分析,之后介绍了异构融合处理器的性能分析工作,并进一步介绍了相关优化技术,随后对异构融合处理器的应用进行了总结.最后,对异构融合处理器未来的研究方向进行展望,并进行了总结.  相似文献   

7.
图形处理器凭借着比传统CPU更高的峰值性能和能效,以及日渐成熟的软件环境,逐渐成为构建异构并行系统的最流行的加速器之一。虽然GPU依靠轻量级线程的灵活切换来隐藏访存延迟,但其超高的并发度仍然给存储系统带来了很大压力,其性能的有效发挥受访存效率的强烈影响。因此GPU程序的访存行为分析及优化一直是GPU相关领域的研究热点,但很少有工作从体系结构的角度分析存储层次的设计对性能的影响。为了更好地指导GPU存储层次的设计和访存优化,从实验的角度详细地分析了GPU各存储层次对程序性能的影响,并总结出若干指导性的优化策略,为未来类似体系结构的存储层次设计和程序优化提供建议。  相似文献   

8.
CPU/GPU协同并行计算研究综述   总被引:3,自引:3,他引:3  
CPU/GPU异构混合并行系统以其强劲计算能力、高性价比和低能耗等特点成为新型高性能计算平台,但其复杂体系结构为并行计算研究提出了巨大挑战。CPU/GPU协同并行计算属于新兴研究领域,是一个开放的课题。根据所用计算资源的规模将CPU/GPU协同并行计算研究划分为三类,尔后从立项依据、研究内容和研究方法等方面重点介绍了几个混合计算项目,并指出了可进一步研究的方向,以期为领域科学家进行协同并行计算研究提供一定参考。  相似文献   

9.
传统并行编程模型和框架不能有效利用和发挥GPU异构并行系统特点,应用开发难度大,性能优化困难,文中采用混合编程模型思想,建立了一种以协处理器为中心的GPU计算核心与CPU控制相融合的多任务流编程模型.模型将并行任务与CUDA流相结合,利用系统硬件并行性特点实现程序任务级和数据级并行;采用任务间消息通信和任务内数据共享通信方式,既保证对传统并行应用的继承又降低了不同存储空间给应用开发带来的复杂性和难度.基于该编程模型实现了一个运行时支持系统原型,测试结果表明可保证高效的数据通信,且能充分利用系统计算能力,提高了应用程序运行效率.  相似文献   

10.
詹云  赵新灿  谭同德 《计算机工程与设计》2012,33(11):4191-4195,4293
针对异构处理器在传统通用计算中利用率低的问题,提出基于开放计算语言OpenCL(open computing language)的新的通用计算技术,它提供了统一的编程模型。介绍了OpenCL的特点、架构及实现原理等,并提出OpenCL性能优化策略。将OpenCL与计算统一设备架构CUDA(compute unified device architecture)及其它通用计算技术进行对比。对比结果表明,OpenCL能够充分发挥异构处理平台上各种处理器的性能潜力,充分合理地分配任务,为进行大规模并行计算提供了新的强有力的工具。  相似文献   

11.
归约算法在科学计算和图像处理等领域有着十分广泛的应用,是并行计算的基本算法之一,因此对归约算法进行加速具有重要意义。为了充分挖掘异构计算平台下GPU的计算能力以对归约算法进行加速,文中提出基于线程内归约、work-group内归约和work-group间归约3个层面的归约优化方法,并打破以往相关工作将优化重心集中在work-group内归约上的传统思维,通过论证指出线程内归约才是归约算法的瓶颈所在。实验结果表明,在不同的数据规模下,所提归约算法与经过精心优化的OpenCV库的CPU版本相比,在AMD W8000和NVIDIA Tesla K20M平台上分别达到了3.91~15.93和2.97~20.24的加速比; 相比于OpenCV库的CUDA版本与OpenCL版本,在NVIDIA Tesla K20M平台上分别达到了2.25~5.97和1.25~1.75的加速比;相比于OpenCL版本,在AMD W8000平台上达到了1.24~5.15的加速比。文中工作不仅实现了归约算法在GPU计算平台上的高性能,而且实现了在不同GPU计算平台间的性能可移植。  相似文献   

12.
为提高生物序列比对算法的性能和效率,提出一种异构处理平台下可移植的大规模生物序列比对算法及其优化方法.通过改变原有Smith-Waterman算法的计算流程和数据依赖关系,增加序列比对的并行性;通过改变存储器布局后使用向量数据类型,提高全局存储器的带宽利用率;通过增加偏移量改变存储器模块的映射方式,避免模块访问冲突,提高局部存储器的使用效率.实验结果表明,优化后的生物序列比对性能提升了近100倍.  相似文献   

13.
GPGPU性能模型及应用实例分析   总被引:2,自引:1,他引:1  
现代图形处理器(GPU)的高性能吸引了大量非图形应用,为了有效地进行性能预测和优化,提出一种GPU处理通用计算问题的性能模型.通过分析现代GPU并行架构和工作原理,将GPU的通用计算过程划分为数据获取、计算、输出和传输4个并列的阶段,结合程序特点和硬件规格对各阶段进行量化分析,完成性能预测.通过实验分析得出两大性能影响要素:计算强度和访问密度,并将其作为性能优化的基本准则.该模型被用于分析几种常见的图像和视频处理算法在GPU上的实现,包括高斯卷积、离散余弦变换和运动估计.实验结果表明,通过增大计算强度和访问密度,文中优化方案显著地降低了GPU上的执行时间,使得计算效率提升了4~10倍,充分说明了该模型在性能预测和优化方面的有效性.  相似文献   

14.
GRAPES(globalregional assimilation and prediction system)数值天气预报模式作为地球大气一个典型的非线性化离散系统,计算量非常巨大,因此利用低成本、低功耗和高性能的GPU对GRAPES模式进行并行加速成为目前的研究热点.首先通过实现GRAPES模式在GPU中的并行加速,发现系统性能提升并不理想.在此基础上,提出了性能优化策略,包括缓解数据传输时间、降低设备内存加载和存储的数量和避免线程控制流分支,实验结果表明,利用GPU的性能优化策略有效地提升了GRAPES系统性能.  相似文献   

15.
尹孟嘉  许先斌  何水兵  胡婧  叶从欢  张涛 《计算机科学》2017,44(4):182-187, 206
稀疏矩阵向量乘(Sparse matrix-vector multiplication,SPMV)是广泛应用于大规模线性求解系统和求解矩阵特征值等问题的基本运算,但在迭代处理过程中它也常常成为处理的瓶颈,影响算法的整体性能。对于不同形态的矩阵,选择不同的存储格式 ,对应的算法往往会产生较大的性能影响。通过实验分析,找到各种矩阵形态在不同存储结构下体现的性能变化特征,构建一个有效的性能度量模型,为评估稀疏矩阵运算开销、合理选择存储格式做出有效的指导。在14组CSR,COO,HYB格式和8组ELL格式的测试用例下,性能预测模型和测量之间的差异低于9%。  相似文献   

16.
人工神经网络训练所包含的运算量随着网络中神经元的数量增多而加大,对于神经元较多的网络训练很耗时。提高人工神经网络训练速度的一个方法是对训练算法优化以减少计算量。由于人工神经网络训练算法包含大量的矩阵和向量运算,如果把优化的算法用运行在GPU上的OpenCL C语言实现,则训练速度相比传统基于CPU计算的实现会提高很多。从硬件的并行计算能力着手,以RPROP算法为例,对其运行在GPU上的OpenCL C语言实现作一些研究。  相似文献   

17.
张延松  刘专  韩瑞琛  张宇  王珊 《软件学报》2023,34(11):5205-5229
GPU数据库近年来在学术界和工业界吸引了大量的关注. 尽管一些原型系统和商业系统(包括开源系统)开发了作为下一代的数据库系统, 但基于GPU的OLAP引擎性能是否真的超过CPU系统仍然存有疑问, 如果能够超越, 那什么样的负载/数据/查询处理模型更加适合, 则需要更深入的研究. 基于GPU的OLAP引擎有两个主要的技术路线: GPU内存处理模式和GPU加速模式. 前者将所有的数据集存储在GPU显存来充分利用GPU的计算性能和高带宽内存性能, 不足之处在于GPU容量有限的显存制约了数据集大小以及稀疏访问模式的数据存储降低GPU显存的存储效率. 后者只在GPU显存中存储部分数据集并通过GPU加速计算密集型负载来支持大数据集, 主要的挑战在于如何为GPU显存选择优化的数据分布和负载分布模型来最小化PCIe传输代价和最大化GPU计算效率. 致力于将两种技术路线集成到OLAP加速引擎中, 研究一个定制化的混合CPU-GPU平台上的OLAP框架OLAP Accelerator, 设计CPU内存计算、GPU内存计算和GPU加速3种OLAP计算模型, 实现GPU平台向量化查询处理技术, 优化显存利用率和查询性能, 探索GPU数据库的不同的技术路线和性能特征. 实验结果显示GPU内存向量化查询处理模型在性能和内存利用率两方面获得最佳性能, 与OmniSciDB和Hyper数据库相比性能达到3.1和4.2倍加速. 基于分区的GPU加速模式仅加速了连接负载来平衡CPU和GPU端的负载, 能够比GPU内存模式支持更大的数据集.  相似文献   

18.
现代GPU一般都提供特定硬件(如纹理部件、光栅化部件及各种片上缓存)以加速二维图像的处理和显示过程,相应的编程模型(CUDA、OpenCL)都定义了特定程序设计接口(CUDA的纹理内存,OpenCL的图像对象)以便图像应用能利用相关硬件支持。以典型图像模糊化处理算法在AMD平台GPU的优化为例,探讨了OpenCL的图像对象在图像算法优化上的适用范围,尤其是分析了其相对于更通用的基于全局内存加片上局部存储进行性能优化的方法的优劣。实验结果表明,图像对象只有在图像为四通道且计算过程中需要缓存的数据量较小时才能带来较好的性能改善,其余情况采用全局内存加局部存储都能获得较好性能。优化后的算法性能相对于精心实现的CPU版加速比为200~1000;相对于NVIDIA NPP库相应函数的性能加速比为1.3~5。  相似文献   

19.
针对GPU并行计算领域缺少精确的性能分析模型和有针对性的性能优化方法,提出一种基于GPU的并行计算性能定量分析模型,其通过对指令流水线、共享存储器访存、全局存储器访存的性能建模,来定量分析并行程序,帮助程序员找到程序运行瓶颈,进行有效的性能优化。实验部分通过3个具有代表性的实际应用(稠密矩阵乘法、三对角线性方程组求解、稀疏矩阵矢量乘法)的性能分析证明了该模型的实用性,并有效地实现了算法的优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号