首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
双陶瓷层热障涂层的隔热行为有限元模拟研究   总被引:1,自引:0,他引:1  
基于热传导、热对流和热辐射理论建立了双陶瓷层热障涂层不透明和半透明物理模型,采用有限元ANSYS软件模拟了稳态温度场。结果表明双陶瓷层在不透明时,随总厚度或顶层厚度增加,顶层上表面温度近似线性增加,第2层和粘结层上表面温度近似线性降低。在陶瓷层半透明条件下,衰减系数对各层温度有一定影响。在衰减系数很大时,各层温度与不透明情况类似;在衰减系数较小时,顶层上表面温度略低于不透明时,第2层上表面温度略高于不透明时,粘结层上表面温度先快速后缓慢降低并保持不变,且远高于不透明时,界面反射能降低各层温度。  相似文献   

2.
热障涂层的研究进展与发展趋势   总被引:2,自引:0,他引:2  
热障涂层一般由金属粘结层和具有低热导率的陶瓷顶层组成,应用于涡轮发动机的热端部件可显著提高其使用温度,延长部件的使用寿命,提高发动机的效率.综述了热障涂层的成分选择、制备方法及等离子喷涂和电子束物理气相沉积2种热障涂层的典型结构,分析了热障涂层的剥落失效机理,并简单介绍了热障涂层的寿命预测模型和隔热特性的研究.  相似文献   

3.
王乐  李太江  李勇  贾建民 《材料保护》2014,(10):30-33,7
为了制备高性能热障涂层,缩短国内外差距,在45钢表面大气等离子喷涂氧化钇部分稳定的氧化锆(YSZ)热障涂层。利用X射线衍射和扫描电镜分析YSZ涂层的相结构和微观形貌,分别测定了YSZ涂层的孔隙率、热导率、显微硬度、结合强度及隔热性能。结果表明:YSZ涂层的孔隙率、隔热温差随喷涂电压增大而减小,随喷涂距离的增加而增大;维氏硬度、结合强度和热导率随喷涂电压增大而增大,随喷涂距离增加而减小;当喷涂电压为80 V,喷涂距离为100 mm时,YSZ热障涂层的结合强度为36.78 MPa,热导率为0.705 W/(m·K),具有较好的隔热性能。  相似文献   

4.
热障涂层的残余应力是影响其服役寿研究不多.在45钢基体上,用超音速火焰喷涂NiCocrAlY打底层,再用大气等离子喷涂ZrO2-8%(质量分数)Y2O3(8YSZ)工作层,制备了纳米结构与传统结构2种类型的热障涂层(TBC).采用SEM、XRD对这2种涂层的粉末及涂层进行了组织结构分析,用纳米压痕仪测得了2种涂层的弹性模量.用X射线衍射应力测试仪测得了2种涂层的表层残余应力.结果表明:喷涂工艺参数相同条件下,对于打底层及工作层的厚度均相同的2种涂层,纳米结构热障涂层的表层残余应力比传统结构热障涂层约低24.7%;相同打底层的纳米结构热障涂层表层残余应力随着陶瓷层厚度增加而增加,陶瓷层厚度在240 um以下时,表层为残余压应力;厚度超过300 um时,表层为残余拉应力.最后提出了相应的物理力学模型.  相似文献   

5.
通过有限元分析软件Abaqus,采用三维模型,对热障涂层表面强流脉冲电子束改性过程进行了数值模拟,分析了电子束轰击过程温度变化以及涂层系统内部应力的分布情况。计算结果表明,随着外界能量的增加,涂层温度随着涂层厚度的增加而降低;当外界能量消失时,冷却过程中,由于涂层表面和周围的热辐射和热扩散作用,陶瓷层表面最先冷却,此时陶瓷层内部温度略微升高,之后陶瓷层内部热能通过陶瓷层表面进行释放,最后整个涂层冷却到室温,温度随时间变化率高达106~107 K/s。冷却至室温时,应力随着陶瓷层厚度的增加呈现先减小后增大的趋势,而在涂层表面径向应力先减小后增大,达到0.5MPa后,应力开始减小至稳态值。  相似文献   

6.
采用有限元方法对SiCp/Al复合材料的导热性能进行了数值模拟, 建立了含界面相颗粒增强铝基复合材料测试模型, 研究了不同界面相种类、厚度对复合材料热导率的影响。结果表明: 当界面相与SiC/Al结合理想时, 且界面相在颗粒表面呈连续分布时, 复合材料热导率随着界面层热导率的增加而增大, 但增加的幅度由快变慢; 复合材料热导率随界面层厚度的变化取决于界面层厚度t与颗粒粒径a的比值, 当t/a很小或t/a较大时, 热导率随界面层厚度的变化很小, 当t/a较小时, 热导率随界面层厚度的变化则与界面层热导率有关。  相似文献   

7.
等离子喷涂热障涂层隔热性能分析方法   总被引:2,自引:1,他引:2  
热障涂层材料已成为现代高性能航空发动机的关键材料,而隔热性能一直是评价热障涂层性能的一个重要指标。首先基于傅里叶导热定律,推导出一维稳态温度场的解析表达式,并讨论了陶瓷层厚度、陶瓷层上表面工作温度和金属基底下表面工作温度对热障涂层系统隔热性能的影响。设计了一种比较新颖的实验测试方法,成功实现了对热障涂层系统内部不同位置的温度进行实时测试和保存实验数据。结果表明,各个温度采集点的实验测试结果与理论预测结果吻合很好,说明提出的实验测试方法可以有效评估不同类型的热障涂层材料体系的隔热性能。  相似文献   

8.
等离子喷涂纳米ZrO_2-8%Y_2O_3涂层的结构及性能   总被引:2,自引:0,他引:2  
热障涂层能提高工件的性能,延长其使用寿命,但目前对其厚度0.5 mm以上的研究报道不多.为此,以纳米ZrO2-8%(质量分数)Y2O3粉末(YSZ)为原料,用等离子体喷涂法制备了3种厚度(0.6,0.8,1.2 mm)的热障涂层,并对涂层的结构和性能进行了研究.结果表明:纳米涂层主要由未熔粉末及周围的柱状晶、等轴晶组成,可观察到大量纳米晶,喷涂电流对组织结构的影响远大于喷涂距离;热障涂层结合强度随涂层厚度的增加而降低;涂层隔热性能随涂层厚度的增加而提高,温度越高优势越明显.  相似文献   

9.
热障涂层已广泛用于燃气发动机燃烧室等高温零部件上。纳米热障涂层韧性改善,厚度可以增加,能够提高零部件使用温度和使用寿命。首先利用低压等离子体在镍基体上喷涂制备NiCoCrAlYTa金属中间结合层和大气等离子体喷涂制备Y_2O_3部分稳定的ZrO_2纳米陶瓷面层,然后将纳米氧化锆热障涂层样品在大气中于1050~1250℃温度范围内煅烧处理2~20h。通过扫描电镜和X射线衍射仪分析纳米氧化锆热障涂层高温煅烧前后的组织结构变化和相组成变化,并与常规微米氧化锆热障涂层进行比较。研究结果表明:经高温煅烧后,纳米氧化锆热障涂层中晶粒大小和在陶瓷面层/金属中间结合层界面上形成的TGO的厚度随煅烧温度升高和时间的延长而增大;纳米热障涂层中TGO的增长速度比常规微米热障涂层快;纳米热障涂层经高温煅烧空气中冷却后,主要由四方相组成;与常规微米热障涂层的相组成比较,纳米氧化锆热障涂层中的四方相为低稳定剂四方相。  相似文献   

10.
通过有限元分析软件Abaqus,采用三维模型,对热障涂层表面强流脉冲电子束改性过程进行了数值模拟,分析了电子束轰击过程温度变化以及涂层系统内部应力的分布情况。结果表明,随着外界能量的增加,涂层温度随着涂层厚度的增加而减小;当外界能量消失,冷却过程中,由于涂层表面和周围的热辐射和热扩散作用,陶瓷层表面最先冷却,此时陶瓷层内部温度略微升高,之后陶瓷层内部热能通过陶瓷层表面进行释放,最后整个涂层冷却至室温,温度随时间变化率高达106~107K/s。冷却至室温时,应力随陶瓷层厚度的增加呈先减小后增加的趋势,而在涂层表面径向应力先减小后增加,达到0.5 MPa后,应力开始减小至稳态值。  相似文献   

11.
Thermal barrier coatings generally consist of a metallic substrate which is the primary structural component, a metallic bond coat which serves as oxygen diffusion barrier, a very thin layer of thermally grown oxide and a ceramic top coat that provides the main thermal shielding. Homogeneous ceramic coatings as top coats appear to have certain undesirable features such as high residual and thermal stresses, generally low toughness and relatively poor bonding strength. The new concept of compositional grading of the top coat may help to overcome some of these shortcomings by eliminating the material property discontinuities. A common mode of failure in thermal barrier coatings seems to be the debonding of the top coat. In this study the related interface crack problem for a graded ceramic/metal top coat is considered. It is assumed that the thermophysical properties of the top coat continuously vary between that of the bond coat at the top coat-bond coat interface and that of the ceramic at and near the free surface. The main objective of the study is to examine the influence of the material nonhomogeneity parameters and relative dimensions on the stress intensity factors and the crack opening displacements.  相似文献   

12.
The thermal conductivity of electron‐beam physical vapor deposited (EB‐PVD) thermal barrier coatings (TBCs) was investigated by the Laser Flash technique. Sample type and methodology of data analyses as well as atmosphere during the measurement have some influence on the data. A large variation of the thermal conductivity was found by changes in TBC microstructure. Exposure at high temperature caused sintering of the porous microstructure that finally increased thermal conductivity up to 30 %. EB‐PVD TBCs show a distinct thickness dependence of the thermal conductivity due to the anisotropic microstructure in thickness direction. Thin TBCs had a 20 % lower thermal conductivity than thick coatings. New compositions of the ceramic top layer offer the largest potential to lower thermal conductivity. Values down to 0.8W/(mK) have been already demonstrated with virgin coatings of pyrochlore compositions.  相似文献   

13.
陶瓷/金属高温热障涂层研究进展   总被引:10,自引:0,他引:10  
在高温恶劣环境下,热障涂层能够长期可靠工作是发展高效燃汽轮机的关键。热障涂层由金属底层和具有较低热导率的陶瓷表面层组成,其失效一般是因金属-陶瓷界面的不稳定而引起,可以通过降低氧的扩散和热应力改善涂层的性能;最后阐述了陶瓷/金属热障涂层的研究前景。  相似文献   

14.
Thermal barrier coatings are extensively used to protect metallic components in applications where the operating conditions include aggressive environment at high temperatures. These coatings are usually processed by thermal spraying techniques and the resulting microstructure includes thin and large splats, associated with the deposition of individual droplets, with porosity between splats. This porosity reduces the oxidation and corrosion resistance favouring the entrance of aggressive species during service. To overcome this limitation, the top coat could be modified by laser glazing reducing surface roughness and sealing open porosity. ZrO2(Y2O3) top coat and NiCrAlY bond coating were air plasma sprayed onto an Inconel 600 Ni base alloy. The top coat was laser remelted and a densified ceramic layer was induced in the top surface of the ceramic coating. This layer inhibited the ingress of aggressive species and delayed bond coat oxidation.  相似文献   

15.
Thermal barrier coatings (TBC) generally consist of a metallic bond coat (BC) and a ceramic top coat (TC). Co–Ni–Cr–Al–Y metallic super alloys and Yttria stabilised zirconia (YSZ) have been widely used as bond coat and top coat for thermal barrier coatings systems, respectively. As a result of long‐term exposure of thermal barrier coatings systems to oxygen‐containing atmospheres at high temperatures, a diffusion of oxygen through the porous ceramic layer occurs and consequently an oxidation zone is formed in the interface between ceramic top coat and metallic bond coat. Alloying components of the BC layer create a so‐called thermally grown oxides layer (TGO). One included oxide type is α‐Al2O3. α‐Al2O3 lowers oxygen diffusion and thus slows down the oxidation process of the bond coat and consequently affects the service life of the coating system positively. The distribution of the alloying elements in the bond coat layer, however, generally causes the formation of mixed oxide phases. The different oxide phases have different growth rates, which cause local stresses, micro‐cracking and, finally, delamination and failure of the ceramic top coat layer. In the present study, a thin Al inter‐layer was deposited by DC‐Magnetron Sputtering on top of the Co–Ni–Cr–Al–Y metallic bond coat, followed by thermal spraying of yttria‐stabilised zirconia (YSZ) as a top coat layer. The deposited Al inter‐layer is meant to transform under operating conditions into a closed layer with high share of α‐Al2O3 that slows down the growth rate of the resulting thermally grown oxides layer. Surface morphology and microstructure characteristics as well as thermal cycling behaviour were investigated to study the effect of the intermediate Al layer on the oxidation of the bond coat compared to standard system. The system with Al inter‐layer shows a smaller thermally grown oxides layer thickness compared to standard system after thermal cycling under same conditions.  相似文献   

16.
NiCrAlY bond coat and ZrO2–8 wt% Y2O3 top coat with various thicknesses were deposited on Hastelloy X by plasma spraying. Residual stress was calculated by the finite element method (FEM) to explain the variations in the bond strength and thermal fatigue characteristics with the thickness of the bond coat and top coat. The bond strength of thermal barrier coatings (TBCs) increased with decreasing maximum residual stress in the y-direction of the top coat. The thermal fatigue characteristics increased with decrease of the maximum principal residual stress of the top coat and the thickness of oxidation layer of the bond coat.  相似文献   

17.
The defects in materials play very important role on the effective thermal conductivity. Especially, the spatial and geometrical characteristics of pores are significant factors for the thermal insulation behavior of thermal barrier coatings (TBCs). In this paper, finite element method was employed to simulate the thermal transfer behavior of TBCs with different spatial and geometrical characteristic of pores. The simulation results indicate that the thermal insulation effect of TBCs would be enhanced when the pore size, pore volume fraction and pore layers which are perpendicular to the thickness direction increase and the space between the adjacent pores decreases. It is predicted that the effective thermal conductivity is different at different directions for the atmospheric plasma spray (APS) TBCs. A novel method, Computational Micromechanics Method (CMM), was utilized to depict the thermal transferring behavior of actual coatings. At the same time, model with different kinds of defects were established, and the effective thermal conductivity as the function of defect orientation angle, defect volume fraction and defect shape coefficient was discussed in detail. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation property.  相似文献   

18.
Gas turbine's efficiency improves as operating temperature is increased. For this reason, metallic components used in turbine engines, for propulsion and power generation, are protected by thermal barrier coatings (TBC). Laser glazing has been used to enhance the oxidation and corrosion resistance of thermally sprayed TBC, but there is no information about the effect of this treatment on the tribological performance. ZrO2(CaO) top coat and NiAIMo bond coating were flame sprayed onto an AlSI 1045 carbon steel. The top coat was laser remelted and a densified ceramic layer was induced in the top surface of the ceramic coating. Both, the as sprayed and the laser remelted top coatings, were formed by cubic ZrO2 with some tetragonal precipitates. The grain size was reduced by the laser treatment. The mechanical properties and the local wear rate were evaluated by depth sensing indentation and scratch tests respectively. The nanoscale wear behaviour was always improved by the laser treatment.  相似文献   

19.
To resist high thermal loads in turbines effectively, turbine blades are protected by thermal barrier coatings in combination with additional air cooling. State‐of‐the‐art yttria stabilised zirconia top coats do not operate at temperatures higher than 1,200 °C. Promising candidates for alternative top coats are pyrochlores, lanthanum zirconate and gadolinium zirconate. But lifetime of pyrochlores is short because of spallation. However, combinations of yttria stabilised zirconia and lanthanum zirconate or gadolinium zirconate as multilayer systems are promising top layers operating at higher temperatures than yttria stabilised zirconia. Such thermal barrier coatings top coats as double‐ceramic‐layer systems consisting of 7 wt.% yttria stabilised zirconia and lanthanum zirconate or gadolinium zirconate were deposited by Electron Beam‐Physical Vapour Deposition. The focus of the work was set on the influence of the coating design and the microstructure variation generated at different rotating speeds on the adhesion and thermally grown oxide behaviour after isothermal oxidation at 1,300 °C. Phase formation of the thermal barrier coatings top coats was obtained using X‐ray diffraction. After isothermal oxidation tests for 50 h at 1,300 °C, both, microstructure change and the formation of the thermally grown oxide were investigated. While the pyrochlore single‐ceramic‐layer are completely spalled off, microstructure of the double‐ceramic‐layer reveals only crack initiation. The thermally grown oxide thickness was determined by means of scanning electron microscopy. A high aluminum and oxygen content in the thermally grown oxide is found using X‐ray spectroscopy. Existence of α‐phase in Al2O3 was proved by X‐ray diffraction. After isothermal testing, no phase transformation can be detected regarding the double‐ceramic‐layer coatings.  相似文献   

20.
Thermal barrier coatings are widely used in aircraft turbines to protect nickel‐based superalloys from the effect of high temperature oxidation and hot corrosion. In this study, both NiCrAlY bond coat and yttria‐stabilized zirconia top coat were deposited using atmospheric plasma spray technique. After coating production, specimens were exposed to oxidation in air atmosphere at 900 °C, 1000 °C and 1100 °C for different periods of time up to 50 h. Microstructural transformations in the ceramic top coat and growth behavior of the thermally grown oxide layer were examined using scanning electron microscopy, porosity calculation, elemental mapping and hardness measurement. Formation of different types of oxides in the thermally grown oxide layer shows that this process strongly depends on deposition technique as well as on oxidation time and temperature. Hardness values of the top coat increased with a decrease in the porosity of the top coat. Uniformity and homogeneity of the thermally grown oxide layer and densification of the top coat were evaluated in terms of the structural durability of thermal barrier coating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号