首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of adding zirconia to the alumina support on supported cobalt Fischer–Tropsch catalysts has been studied. At 5 bar and H2:CO ratio 9:1 zirconia addition to the support leads to a significant increase in both activity and selectivity to higher hydrocarbons as compared to the unmodified catalysts. Reducibility and cobalt dispersion on the other hand are not improved by the presence of zirconia compared to the unmodified catalysts. SSITKA measurements have been performed in order to determine the intrinsic activity per active site. At constant temperature, zirconia-modified and unmodified catalysts showed basically the same intrinsic activity. Similar results were obtained with a noble metal (Pt) promoted catalyst. The promoting effect appears to be mainly due to coverage effects rather than a change in the intrinsic activity of the active sites. The turnover frequencies were found to be independent of pressure but strongly temperature dependent. However, the increase in turnover frequency did not account for the entire increase in reaction rate with temperature. This indicates that also the coverage of reactive intermediates increases with increasing temperature.  相似文献   

2.
Fischer–Tropsch synthesis was carried out in slurry phase over uniformly dispersed Co–SiO2 catalysts prepared by the sol–gel method. When 0.01–1 wt.% of noble metals were added to the Co–SiO2 catalysts, a high and stable catalytic activity was obtained over 60 h of the reaction at 503 K and 1 MPa. The addition of noble metals increased the reducibility of surface Co on the catalysts, without changing the particle size of Co metal significantly. High dispersion of metallic Co species stabilized on SiO2 was responsible for stable activity. The uniform pore size of the catalysts was enlarged by varying the preparation conditions and by adding organic compounds such as N,N-dimethylformamide and formamide. Increased pore size resulted in decrease in CO conversion and selectivity for CO2, a byproduct, and an increase in the olefin/paraffin ratio of the products. By modifying the surface of wide pore silica with Co–SiO2 prepared by the sol–gel method, a bimodal pore structured catalyst was prepared. The bimodal catalyst showed high catalytic performance with reducing the amount of the expensive sol–gel Co–SiO2.  相似文献   

3.
Both low loaded 15% Co/Al2O3 and more highly loaded 25% Co/Al2O3 catalysts are studied, in order to explore the impact of cluster size on the stability of the cobalt cluster to support-influenced reoxidation processes at high H2O/CO ratios. XAFS and activity data suggest that there are two regions for the water effect: at lower H2O/CO ratios water influences CO conversion by reversible kinetic effects while at higher H2O/CO ratios cobalt re-oxidation processes occur. The latter regime where water was added at and above 25% are examined. Synthesis conditions were maintained constant while argon balancing gas was replaced by added water. Catalyst samples were withdrawn from the reactor during synthesis at different partial pressures of added water and cooled in the wax product under inert gas. The EXAFS results suggest that, unlike the smaller clusters on unpromoted and, especially noble-metal promoted, 15% Co/Al2O3 catalysts, the larger crystallites (>10 nm by chemisorption and XRD) on 25% Co/Al2O3 undergo oxidation by H2O to CoO, most likely confined to the surface. The clusters are re-reduced when H2O was switched off, and the activity displayed an important recovery.  相似文献   

4.
N. J. Coville  J. Li 《Catalysis Today》2002,71(3-4):403-410
A series of Co/B/TiO2 (B=ammoniumborate, boric acid, o-carborane, 0.01–1.5 wt.% B) catalysts were synthesized. The addition of boron decreased the reducibility of the Co as determined from temperature-programmed reduction studies and H2 reduction/O2back titration studies. This in turn decreased the FT activity but not the turnover frequency of the Co catalyst.  相似文献   

5.
The conversion of CO/H2, CO2/H2 and (CO+CO2)/H2 mixtures using cobalt catalysts under typical Fischer–Tropsch synthesis conditions has been carried out. The results show that in the presence of CO, CO2 hydrogenation is slow. For the cases of only CO or only CO2 hydrogenation, similar catalytic activities were obtained but the selectivities were very different. For CO hydrogenation, normal Fischer–Tropsch synthesis product distributions were observed with an of about 0.80; in contrast, the CO2 hydrogenation products contained about 70% or more of methane. Thus, CO2 and CO hydrogenation appears to follow different reaction pathways. The catalyst deactivates more rapidly for the conversion of CO than for CO2 even though the H2O/H2 ratio is at least two times larger for the conversion of CO2. Since the catalyst ages more slowly in the presence of the higher H2O/H2 conditions, it is concluded that water alone does not account for the deactivation and that there is a deactivation pathway that involves the assistance of CO.  相似文献   

6.
We examined the effect of the activation process on the structural and morphological characteristics of a cobalt-based catalyst for Fischer–Tropsch synthesis. A 10 wt.% Co/SiO2 catalyst prepared by wet impregnation was separately activated under H2, CO or a H2/CO mixture. The structural changes during activation from 298 to 773 K were studied by in situ X-ray diffraction. Catalysts were examined by SEM, TEM, XPS and in situ DRIFT-MS. The H2/CO activation produced redispersion of cobalt particles and simultaneous carbon nanostructures formation. The catalyst showed the highest performance in the Fischer–Tropsch synthesis after the H2/CO activation.  相似文献   

7.
Passivation of highly dispersed metal catalysts after reduction is necessary prior to exposure to air due to the exothermicity of metal oxidation. This exothermicity can result in a significant increase in temperature of the catalyst resulting in catalyst degradation and a potential fire hazard. This paper reports the results of a study of passivation of Ru-promoted Co/alumina. Passivations using CO and CO+H2 mixtures were compared to the standard method of passivation using small concentrations of O2. Passivation by CO+H2 resulted in a lower temperature rise upon exposure to air than oxygen passivation. Passivation using CO/H2=10 resulted in a catalyst whose catalytic activity for CO hydrogenation was able to be recovered after exposure to air by re-reduction similar to after oxygen passivation. CO passivation yielded a catalyst that was not able to be as well recovered upon re-reduction, probably due to the formation of graphitic carbon. Exposure of the CO/H2 passivated catalyst to air for at least 90 min actually made it easier to recover the original activity upon re-reduction. This is probably related to the oxidation of the carbidic passivation layer during air exposure.  相似文献   

8.
Small Co clusters (d<10 nm) supported over mixed La–Co–Fe perovskites were successfully synthesized. These catalysts were active for Fischer–Tropsch (FT). Depending on the Co to Fe ratios the mixed perovskite exhibited two different forms: the rhombohedral phase of LaCoO3 is maintained for the mixed perovskite when x>0.5, the orthorhombic phase of LaFeO3 is found for x<0.5. Interestingly only one of these structures is active for the FT reaction: the orthorhombic structure. This is most likely due to the capacity of this material to maintain its structure even with a high number of cation vacancies. These cations (mostly Co) were on purpose extracted and reduced. Magnetic measurements clearly showed their metallic nature. Rhombohedral Co–Fe mixed perovskites (x≥0.5) cannot be used as precursors for Fischer–Tropsch catalysts: their partial reduction only consists in a complete reduction of Co3+ into Co2+.

The partial reduction of orthorhombic perovskites (x<0.5) leads to active Fischer–Tropsch (FT) catalysts by formation of a metal phase well dispersed on a cation-deficient perovskite. The FT activity is related to the stability of the precursor perovskite. When initially calcined at 600 °C, a maximum of 8.6 wt.% of Co0 can be extracted from LaCo0.40Fe0.60O3 (compared to only 2 wt.% after calcination at 750 °C). The catalyst is then composed of Co0 particles of 10 nm on a stable deficient perovskite LaCo0.053+Fe0.603+O2.40. Catalytic tests showed that up to 70% in the molar selectivity for hydrocarbons was obtained at 250 °C, 40% of which was composed of the C2–C4 fraction.  相似文献   


9.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

10.
The pulse transient method has been used to study the kinetics of several key steps of Fischer–Tropsch (FT) synthesis over cobalt supported catalysts. These elementary steps involve chemisorption of hydrogen and propene, and chemisorption and hydrogenation of carbon monoxide. It is found that at the conditions of Fischer–Tropsch synthesis, hydrogen chemisorption is reversible and quasi-equilibrated, while carbon monoxide adsorption is generally irreversible. Chemisorption of propene on cobalt metal sites results in its rapid autohydrogenation to propane and simultaneous formation of CxHy surface species.

The transient response curves produced during hydrogenation of carbon monoxide pulses in a flow of hydrogen have been analyzed using the modified Kobayashi model, which involves irreversible chemisorption and dissociation of carbon monoxide, quasi-equilibrated adsorption of hydrogen and reversible adsorption of water. The kinetic analysis suggests that oxygen-containing species are probably the most abundant surface intermediates. Desorption of water from the catalysts seems to be much slower than hydrogenation of surface carbon species.  相似文献   


11.
The 13C-tracer results from the introduction of 13C2H4 into syngas prior to conversion with a rhodium catalyst have been used to support a surface vinyl mechanism for Fischer–Tropsch synthesis. The results were first interpreted by a mechanism that involved a decrease in 13C species on the surface as the carbon number increased. This model is shown to be incorrect. Considering only the 13C-labeled products, the data are consistent with earlier tracer studies showing that the added 13C2H4 initiates chains.  相似文献   

12.
Monolithic catalysts made of cordierite and γ-Al2O3 have been prepared and tested for the Fischer–Tropsch (FT) synthesis. When operated without oil circulation, washcoated cordierite monoliths have previously been shown to be as active and selective as the corresponding powder catalyst provided that the monoliths have low washcoat loadings. Two-phase operation, i.e. with oil/product circulation during reaction, resulted in improved heat removal and temperature control, in lower apparent activity and faster deactivation, but the C5+ selectivity was equal to or even better than without oil circulation. The lower apparent activities obtained with oil circulation seem to be a combination of catalyst deactivation and flow-related problems in the present experimental set-up.  相似文献   

13.
The influence of support type and cobalt cluster size (i.e., with average diameters falling within the range of 8-40 nm) on the kinetics of Fischer-Tropsch synthesis (FT) were investigated by kinetic tests employing a CSTR and two Co/γ-Al2O3 catalysts having different average pore sizes, and two Co/SiO2 catalysts prepared on the same support but having different loadings. A kinetic model that contains a water effect constant “m” was used to fit the experimental data obtained with all four catalysts. Kinetic parameters suggest that both support type and average Co particle size impact FT behavior. Cobalt cluster size influenced kinetic parameters such as reaction order, rate constant, and the water effect parameter. In the cluster size range studied, decreasing the average Co cluster diameter by about 30% led to an increase in the intrinsic reaction rate constant k, defined on a per g of catalyst basis, by 62-102% for the γ-Al2O3 and SiO2-supported cobalt catalysts. This increase was due to the higher active Co0 surface site density as measured by hydrogen chemisorption. Moreover, less inhibition by adsorbed CO and greater H2 dissociation on catalysts having smaller Co particles was suggested by the higher a and lower b values obtained for the measured reaction orders. Interestingly, irrespective of support type, the catalysts having smaller average Co particles were more sensitive to water. Comparing the catalysts having strong interactions between cobalt and support (Co/Al2O3) to the ones with weak interactions (Co/SiO2), the water effect parameters were found to be positive (indicating a negative influence on CO conversion) and negative (denoting a positive effect on CO conversion), respectively. No clear trend was observed for b values among the different supports, but greater a and a/b values were observed for both Al2O3-supported Co catalysts, implying greater inhibition of the FT rate by strongly adsorbed CO on Co/Al2O3 relative to Co/SiO2. For both supports, the order on PCO was always found to be negative (i.e., suggesting an inhibiting effect) and positive for PH2 for all four catalysts. The order of the reaction on PH2 was close to 0.5, suggesting that dissociated H2 is likely involved in the catalytic cycle. Finally, in the limited range of average pore diameters studied (13.5 and 18.2 nm), the average pore size of the Al2O3-supported Co catalysts displayed no observable impact on the reaction rate or water effect, suggesting either that the reaction is kinetically controlled, or that the pore size difference was not significant enough to elicit a measurable response.  相似文献   

14.
The following overview is divided roughly into three sections. The first section covers the period from the late 1920s when the first liquid phase synthesis was first conducted until about 1960 when the interest in Fischer–Tropsch synthesis (FTS) declined because of the renewed view of an abundance of petroleum at a low price. The second period includes the activity that resulted from the oil shortage due to the Arab embargo in 1972 and covers from about 1960 to 1985 when the period of gloomy projections for rapidly increasing prices for crude had faded away. The third section covers the period from when the interest in FTS was no longer driven by the projected supply and/or price of petroleum but by the desire to monetize stranded natural gas and/or terminate flaring the gas associated with petroleum production and other environmental concerns (1985 to date). These sections are followed by a brief overview of the current status of the scientific and engineering understanding of slurry bubble column reactors.  相似文献   

15.
A. M. Saib  M. Claeys  E. van Steen   《Catalysis Today》2002,71(3-4):395-402
The influence of the effect of average pore diameter of silica support on the physical and chemical properties of supported cobalt catalysts and their performance in the Fischer–Tropsch synthesis was investigated. Silicas with different mean pore diameter (20, 40, 60, 100 and 150 Å) were impregnated with cobalt nitrate to produce catalysts containing 20 wt.% cobalt. The metal crystallite size and degree of reduction was found to increase with increasing pore diameter of the support for supports with an average pore diameter larger or equal to 40 Å, and hence the dispersion decreased. In impregnated catalysts, the metal crystallites seems to appear in clusters on the support. With increasing average pore diameter, the size of these clusters increases. In the Fischer–Tropsch synthesis, the 100 Å supported catalyst proved to be the most active and selective catalyst for hydrocarbon formation. The C5+ and methane selectivity passed through a maximum and minimum at the 100 Å supported catalyst, respectively, which can be explained quantitatively using the reactant transport model proposed by Iglesia et al.  相似文献   

16.
The rate of Fischer–Tropsch synthesis over an industrial well-characterized Co–Ru/γ-Al2O3 catalyst was studied in a laboratory well mixed, continuous flow, slurry reactor under the conditions relevant to industrial operations as follows: temperature of 200–240 °C, pressure of 20–35 bar, H2/CO feed ratio of 1.0–2.5, gas hourly space velocity of 500–1500 N cm3 gcat− 1 h− 1 and conversions of 10–84% of carbon monoxide and 13–89% of hydrogen. The ranges of partial pressures of CO and H2 have been chosen as 5–15 and 10–25 bar respectively. Five kinetic models are considered: one empirical power law model and four variations of the Langmuir–Hinshelwood–Hougen–Watson representation. All models considered incorporate a strong inhibition due to CO adsorption. The data of this study are fitted fairly well by a simple LHHW form − RH2 + CO = apH20.988pCO0.508 / (1 + bpCO0.508)2 in comparison to fits of the same data by several other representative LHHW rate forms proposed in other works. The apparent activation energy was 94–103 kJ/mol. Kinetic parameters are determined using the genetic algorithm approach (GA), followed by the Levenberg–Marquardt (LM) method to make refined optimization, and are validated by means of statistical analysis. Also, the performance of the catalyst for Fischer–Tropsch synthesis and the hydrocarbon product distributions were investigated under different reaction conditions.  相似文献   

17.
Changes of activity and selectivity during the initial phases of Fischer–Tropsch (FT) synthesis have been measured with three promoted cobalt catalysts. It is shown that the FT regime is formed in situ in a slow process lasting several days. A “construction” of the “true FT catalyst” is therefore assumed. Taking into account complementary investigations, this construction is assigned to the segregation of the catalyst surface caused by strong CO chemisorption. This process would be accompanied by an increase of the number of active sites and their disproportionation into sites of higher and lower coordinations, which would exhibit different catalytic properties. The observed initial activity and selectivity changes are well to be explained with this concept.  相似文献   

18.
The addition of water during Fischer–Tropsch synthesis over a supported ruthenium catalyst led to a significant increase in product formation rates and significant changes in product selectivity, in particular lower methane selectivity and improved chain growth. Upon increasing water partial pressures, the total product distribution shifted from ASF distributions, with typical deviations due to olefin reinsertion, to a much narrower distributions. Such distributions can mechanistically not be explained by sole C1-wise chain growth. An additional product formation route considering combination of adjacent alkyl chains to form paraffins (“reverse hydrogenolysis”) has been proposed. The findings are discussed with regard to the crucial mechanistic role of water as a moderator in the kinetic regime of the Fischer–Tropsch synthesis.  相似文献   

19.
The effect of cobalt precursor, catalyst pretreatment and promotion with ruthenium and rhenium on the formation of cobalt metal nanoparticles and catalytic performance of supported Fischer–Tropsch (FT) catalysts was studied using a combination of techniques (DSC–TGA, UV–vis spectroscopy, XPS, XRD, EXAFS–XANES, in situ magnetization measurements, propene chemisorption and catalytic measurements). The cobalt promoted and unpromoted catalysts were prepared by aqueous co-impregnation using cobalt nitrate or acetate, ruthenium nitrosyl nitrate or perrhenic acid. In both unpromoted and Ru and Re-promoted cobalt catalysts after impregnation and drying, cobalt is present mainly in octahedrally coordinated complexes. The repartition of cobalt species between Co3O4 and cobalt silicate depends essentially on the exothermicity of precursor decomposition. Cobalt nitrate precursor, with an endothermic decomposition, favors Co3O4 crystallites. Lower temperature of cobalt nitrate decomposition and catalyst calcination generally leads to higher dispersion of supported cobalt oxide. Cobalt acetate precursor, with an exothermic decomposition, favors cobalt silicate. By optimizing the conditions of cobalt acetate decomposition, the fraction of cobalt silicate can be decreased favoring a more reducible Co3O4 phase. For the catalysts prepared from cobalt nitrate, promotion with ruthenium increases the cobalt dispersion, while maintaining high reducibility. For the catalyst prepared via low temperature decomposition of cobalt acetate, addition of ruthenium increases the fraction of Co3O4 crystalline phase and decreases the concentration of barely reducible cobalt silicate. The Fischer–Tropsch reaction rates over unpromoted and promoted cobalt catalysts were found to be primarily a function of the number of cobalt metal sites, which are generated by the reduction of Co3O4 crystallites.  相似文献   

20.
Cobalt catalysts (2–10 wt% Co) supported on silica-rich MCM-22 zeolites have been prepared by impregnation with aqueous Co(NO3)2 solutions. The catalysts are characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption, solid state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The catalytic properties for the Fischer–Tropsch synthesis (FTS) at 280 °C, 12.5 bar and H2/CO = 2 are evaluated. The catalysts supported on MCM-22 exhibit the highest selectivity to long-chain (C5+) hydrocarbons when MCM-22 supports are synthesized with the appropriate Si/Al ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号