首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A failure investigation has been conducted on a diesel engine gear train consisting of a drive crankshaft and a driven camshaft gears that were used in a truck. The gears are made from a nitrided 42CrMo steel. Adjacent teeth fracture regions appeared on the gears after a service of 4.2 × 104 km. Fractographic features indicate that multiple origins fatigue fracture was the dominant failure mechanism for the gear teeth. The crankshaft gear fracture first, followed by the camshaft gear. Low hardness in subsurface and core region of the nitrided crankshaft gear makes it difficult for the matrix to support the load by the engaged camshaft gear to lead to initiating the fatigue crack at the root fillet bearing the maximum tensile stress. The crankshaft gear is the component causing trouble for the failed gears train.  相似文献   

2.
The purpose of this study was to evaluate microstructural and mechanical change of DP780 steel after tungsten inert gas (TIG) welding and the influence of notch locations on the fatigue crack growth (FCG) behavior. The tempering of martensite in the sub-critical heat affected zone (HAZ) resulted in a lower hardness (~ 220 HV) compared to the base material (~ 270 HV), failure was found to originate in the soft HAZ during tensile test. The fusion zone (FZ) consisted of martensite and some acicular ferrite. The joint showed a superior tensile strength with a joint efficiency of 94.6%. The crack growth path of HAZ gradually deviated towards BM due to the asymmetrical plastic zone at the crack tip. The FCG rate of the crack transverse to the weld was fluctuant. The Paris model can describe the FCG rate of homogeneous material rather well, but it cannot precisely represent the FCG rate of heterogeneous material. The fatigue fracture surface showed that the stable expanding region was mainly characterized by typical fatigue striations in conjunction with secondary cracks; the rapid expanding region contained quasi-cleavage morphology and dimples. However, ductile fracture mechanism predominated with an increasing stress intensity factor range (ΔK). The final unstable failure fractograph was subtotal dimples.  相似文献   

3.
We present an analysis of the fatigue failure of an 18 tooth star–ratchet gear (SRG). The subject gear was implemented in the freewheel assembly of a mountain bicycle. After 6 years of service, the gear failed unexpectedly during a typical off-road ride. The unique geometry of SRGs precluded a simple comparison to existing gear lifetimes. Scanning Electron Microscopy (SEM) analysis of the failed gears showed crack initiation at the root of the gear teeth, followed by fatigue crack propagation and eventual chip-out. A biomechanical analysis of pedaling forces, coupled with explicit power data obtained from instrumented rides over the same trails, in conjunction with a Finite Element Analysis (FEA) of the gear, were used to determine stress amplitudes for fatigue calculations. Energy dispersive spectroscopy (EDS) determined the alloy composition of the gear and thus set the strength and fatigue properties of the gear. Basquin’s law, Goodman’s mean stress correction, and Miner’s rule were used to estimate the lifetime, in bike rides, of the gear. Our analysis led to an estimate of 2288 rides, while failure was reported after roughly 312 rides. Given the uncertainties in fatigue life estimation and service use, we find this estimate acceptable.  相似文献   

4.
The dynamically loaded spline shaft-hub connection that without macro relative movement between shaft and hub are exposed to the danger of fretting fatigue in the contact zone of teeth flank and plain fatigue at teeth fillet at the same time. The competition of fretting fatigue and plain fatigue determines that which one dominates the failure of it and therefore the fatigue performance of it. In order to deal with this plain–fretting fatigue coexisted situation, a plain–fretting fatigue unified prediction model is introduced in this paper and implemented in the representative spline teeth pair. Predicted by this model, the failure of involute spline shaft-hub connection teeth DIN 5480 45 × 2 × 21 is plain fatigue at teeth fillet dominated. Corresponding to the theoretical modeling efforts, a representative teeth pair fatigue test apparatus was developed. With this test apparatus, the initiation and propagation of fatigue cracks can be detected on line by monitoring the change of resonant frequency. The test results also showed that the crack occurs at teeth fillet at first.  相似文献   

5.
Rotating bending (52.5 Hz) and ultrasonic (20 kHz) fatigue tests were performed on the specimens of a bearing steel, which were quenched and tempered at 150 °C, 300 °C, 450 °C and 600 °C, respectively, to investigate the influence of strength level and loading frequency on the fatigue behavior in very-high-cycle regime. Influences on fatigue resistance of materials, characteristics of SN curves and transition of crack initiation site were discussed. The specimens with higher strength showed interior fracture mode in very-high-cycle regime and with slight frequency effect, otherwise cracks all initiate from the surface and the fatigue strength was much higher under ultrasonic cycling.  相似文献   

6.
Through investigating and comparing the fatigue behavior of an as-cast Mg–7%Gd–5%Y–1%Nd–0.5%Zr alloy in both laboratory air and 3.5 wt.% NaCl solution, the effect of corrosion attack on fatigue crack initiation has been disclosed. The S–N curves showed that the fatigue strength in air was 120 MPa and not sensitive to the loading frequency, whereas the fatigue strength in NaCl solution decreased from 80 MPa to 60 MPa with the loading frequency decreasing from 20 Hz to 5 Hz. Observations to fracture surfaces demonstrated that in air, fatigue cracks preferentially initiated at the oxide inclusions. However, the fatigue crack initiation in NaCl solution was associated with corrosion pits. Moreover, multiple fatigue cracks initiated at pits on fracture surfaces of corrosion fatigue failed samples when the loading frequency decreased to 5 Hz. Based on the measured “defect area” of oxide inclusions, the predicted fatigue strength in air could be well fitted with the experimental data. However, due to the occurrence of hydrogen embrittlement and crack initiation at multiple sites, the fatigue strength of samples tested in NaCl solution cannot be predicted.  相似文献   

7.
A Metro train is one of the heavily designed structures and is capable of having long life span of 20–30 years. The occurrence of fatigue crack in the bolster of a metro train is very unusual. In this paper, a series of fatigue damage assessments on a bolster was performed to understand the possibility of fatigue crack initiation under normal operating conditions. Additionally, fatigue crack growth analysis was performed to check for the possibility of unstable crack growth during normal service operation. In the fatigue damage assessment, minimum safety margin of 2.71 was calculated until the end of design life span of 30 years. In the crack growth analysis, operable years of 6.9 was calculated even a 30 mm-sized-initial-crack grows to unstable crack growth. From these two results, we can conclude that the cracks found at the bolster thought to initiate due to accidental over loadings during service, and even though the 30 mm-sized-initial-crack can be detected before it brings unstable crack growth considering maintenance period of normally every 3 years.  相似文献   

8.
This paper analyses TB 20 training aircraft main landing gear attachment bearings which were failed as a result of cracks. Strut bearing is an attachment fitting of landing gear which attached to the wing spar and secures the hinged strut. TB 20 Trinidad aircrafts are used for training purposes at Anadolu University. With respect to Service Bulletin, the hinged strut attachment bearings should be inspected for crack detection after reaching 6000 landings or 4000 flight h, whichever occurs first (SB 10-080-57 Amendment 4, 1994). Cracks on the bearings were detected during the nondestructive inspection. The crack initiation and propagation on the attachment bearings were investigated by using light microscope and scanning electron microscope (SEM) attached with an energy dispersive X-ray spectrometer (EDX). The results of light microscope and SEM showed that the cracks were initiated by corrosion and assisted by fatigue and the crack propagation was accelerated by corrosion.  相似文献   

9.
The present study performs an experimental investigation to identify the EDM processing parameters which suppress the formation of surface cracks in the machined surface of SKD11 tool steel specimens. In the EDM trials, the specimens are machined using pulse currents of 4 A, 16 A or 32 A with pulse-on durations of either 4 μs or 16 μs. The various specimens are then fatigue tested at loads ranging from 1470 to 2401 N in order to determine their respective fatigue lives. A polished SKD11 specimen is also fatigue tested for comparison purposes. Finally, the fracture surfaces are examined using scanning electron microscopy to examine the crack propagation characteristics.The results show that increasing the pulse current and reducing the pulse-on duration provides an effective means of suppressing the surface cracking phenomenon. Higher values of the pulse current and pulse-on duration are found to increase the average thickness of the recast layer. Overall, the present results show that the four specimens considered in the fatigue test can be ranked in order of reducing fatigue life as follows: (1) the polished specimen, (2) the specimen with a thin recast layer and no surface cracks, (3) the specimen with a thick recast layer and no surface cracks and (4) the specimen with surface cracks.  相似文献   

10.
Thermal fatigue cracks can often be found on the friction surface of brake discs used in railway vehicles after a period of usage and include crackle, radial and circumferential patterns. These cracks typically exhibit different initiation and propagation behavior under different braking conditions. In this paper, the effect of braking energy on fatigue crack evolution is analyzed by using experimental testing and numerical simulations. Macro observations show that a significant number of radial cracks appear on the surface of brake discs which operate at 300 km/h, while crackles typically appear after repeated emergency braking (EB) at 200 km/h. No crack growth was observed on disc surfaces after routine braking. The cyclic load that leads to the fatigue crack propagation consists of compressive stress during braking and residual tensile stress after cooling. Simulation results show that the depth of cracks correlates well with the residual tensile stress distribution in brake discs. Breaking tests exposed that the fracture surface of fatigue cracks which were covered by oxides shows nearly elliptic-type. Higher braking energy leads to a hardened layer on the friction surface and oxide generation near the crack edges, which are also important factors that contribute to accelerating crack propagation.  相似文献   

11.
The worm gear connecting bolts of refueling machines of a nuclear power plant, with implementing standard of ANSI/ASME B18.3 and ASTM A574-08 and strength grade of 10.9, fractured at the thread neck position after running for about 10 years, and means such as macro examination, chemical compositions analysis, hardness testing, metallographic examination and fracture analysis, were used to analyze the fracture property and reasons of the bolts. The results show that the fracture of the bolts is due to two-way bending fatigue fracture. Surface decarburization of the bolts and stress concentration at the bolt thread neck decreased the fatigue strength of this position and resulted in the initiation of fatigue cracks. By comprehensive analysis and stress estimating, it was concluded that the main reason for fracture of the bolts is that there was a big gap between the bolts and the bolt holes, which resulted in fatigue fracture of the worm gear connecting bolts.  相似文献   

12.
This study aims to investigate the cause of failure of an 845 mm external diameter reducing gear that operated during 30 months in a petrochemical plant. The failure analysis procedure included material characterisation (microstructure, chemical composition and microhardness), fracture surface evaluation, and stress distribution by finite elements on critical regions of the gear. Fracture mechanics and fatigue crack growth were also used to develop a da/dN–ΔK curve and then determine the gear material crack growth resistance. Results indicate that the gear was not properly manufactured and failure occurred as a result of a fatigue process facilitated by a manufacturing defect.  相似文献   

13.
齿轮轴运行近1a(年)后发生相邻两齿断裂。采用宏、微观检验以及硬度试验等方法对轴的断裂原因进行了分析。结果表明,齿轮轴断齿属于疲劳断裂。因齿轮箱供油不足,造成齿轮轴在高温状态下其强度和硬度急剧下降,导致齿轮轴断齿而失效。  相似文献   

14.
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 in. (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.  相似文献   

15.
The fatigue strength and failure mechanisms of defect-free (“sound”) and flaw bearing friction stir butt-welds of 3.1 mm-thick AA2198-T8 Al–Li–Cu alloy have been investigated via S–N curves at R = 0.1 using cross weld specimens. The fatigue strength of sound welds is only reduced by 10–15% at the aimed lifetime of 105 cycles compared to the base material. Joint Line Remnant (JLR) bearing welds have a similar fatigue strength as sound welds and the JLR is not the crack initiation site. Kissing Bond (KB) bearing welds that have undergone a weld root polishing show a reduction in fatigue strength by 17% compared to sound welds. For specimens loaded at or above yield strength of the weld nugget the crack systematically initiates from the KB during the first cycle, which is interpreted further using fracture mechanics. The strongest reduction, about 28% in fatigue strength, is found for welds with an initial gap between the parent sheets (GAP welds) along with initiation at intergranular surface microcracks. Kahn tear tests show a reduction in tearing resistance for the flaw bearing welds with a similar ranking as for the fatigue strength.  相似文献   

16.
The effect of stress ratio (R) on fatigue lifetime of a cast Ti–45Al–8.0Nb–0.2W–0.2B–0.1Y (at.%) alloy was investigated at 750 °C. Fatigue tests with various stress ratios ranging from 0.1 to 1 were performed using a mini servo-hydraulic fatigue machine inside a chamber of scanning electron microscope (SEM). Fatigue crack initiation and propagation behavior was studied by in situ SEM observation and fatigue fracture mode was examined by fracture surface analysis. It is found that fatigue lifetime shows a reversed S-type curve with the increase of stress ratio. At R ranging from 0.1 to 0.4, creep–fatigue interaction dominates the fatigue lifetime and the fatigue lifetime reaches its minimum value at R = 0.3. At R ranging from 0.4 to 1, creep damage dominates the fatigue lifetime and the fatigue lifetime exhibits inverse proportional relation with R. Meanwhile, with the increase of stress ratio, the fatigue crack initiation sites transform from lamellar interface at R = 0.1, to lamellar interface and colony boundary at R = 0.3, and to lamellar colony boundary at R = 0.5. Accordingly, the fatigue fracture mode transforms from transgranular cracking, to transgranular and intergranular cracking, and to intergranular cracking.  相似文献   

17.
The paper is focused on an identification of the local mode II mechanism of fatigue cracks loaded under the remote mode III and the mixed mode II + III and presents a convincing experimental evidence of such a mechanism in materials with a nearly coplanar crack growth. Closure-free data were obtained by applying fatigue experiments in modes II, III and II + III in commercially pure titanium and niobium. The results revealed that the micromechanism of propagation of all kinds of shear-mode cracks can be described by a common model of advances of local mode II crack segments nearly in the direction of applied shear stress. These segments nucleated at spatial geometrical irregularities of the precrack front generating fibrous patterns at fracture surfaces.  相似文献   

18.
The failure of a high-speed pinion gear shaft was investigated. The pinion gear was an integral part of a system used to compress the natural gas. It was a high-speed gear mounted on two roller bearings. An abnormal wear pattern was observed on the shaft surface, beneath the inner race of the bearing. The material from shaft was observed to be dislodged and stuck to the surface of the inner race. This transfer of material imparted an imbalance to the assembly, and abnormal sounds and fumes were observed two days before failure. The macrofeatures of the fracture surface resemble these of fatigue but electron microscopy showed brittle and mostly intergranular fracture. Fatigue features such as striations were not found on the fracture surfaces. Fatigue samples made from the same material and heat-treated to the same hardness were tested under uniaxial fatigue and the fracture features were compared with the original crack surface. The microfeatures of fracture surfaces were almost identical. The root cause of failure was determined to be fatigue, and cracks on the pinion shaft in the region beneath the inner bearing race lead to the transfer of material.  相似文献   

19.
The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of Cr–Mo–V low alloy steel which was used for forged railway brake discs was studied. Tensile strength and LCF properties were examined over a range from room temperature (RT) to 600 °C using specimens cut from circumferential direction of a forged disk. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior and behaves Masing type, especially at higher strain amplitudes. At higher than 600 °C, carbide particles aggregated and a decarburized layer developed near the specimen surface. Micro voids distribute within the depth of 50 μm from the specimen surface could coalesce with fatigue cracks. Multiple crack initiation sites were observed on the fracture surface. The oxide film that generated at 600 °C covered the fatigue striations and accelerated the crack propagation. Final fracture area with bigger and deeper dimples showed better ductility at higher temperature. The investigated LCF behavior can provide reference for brake disc life assessment and fracture mechanisms analysis.  相似文献   

20.
The fatigue crack growth behaviour of short corner cracks in the Aluminium alloy Al 6013-T6 was investigated. The aim was to determine the crack growth rates of small corner cracks at a stress ratio of R = 0.1, R = 0.7 and R = 0.8 and to find a possible way to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T) – specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The precracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a focussed ion beam. The results of the fatigue crack growth tests with short corner cracks were compared with the long fatigue crack growth test data. The short cracks grew at ΔK-values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK-values and the same stress ratios. A model was created on the basis of constant Kmax-tests with long cracks that gives a good and conservative estimation of the short crack growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号