首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue–penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste) and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste–disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.  相似文献   

2.
聚醚砜微孔膜的疏水改性及其在膜蒸馏中的应用   总被引:1,自引:0,他引:1  
徐丽  许颖  杜春慧  徐又一 《功能材料》2007,38(4):573-575,579
以全氟正己烷为等离子体源对聚醚砜微孔膜进行表面疏水改性,X光电子能谱(XPS)分析结果证实了全氟正己烷在膜表面的存在,膜表面氟含量最高达到49%.改性后的膜疏水性显著提高,水接触角从92°提高到123°.扫描电镜结果显示改性膜的表面被一薄层覆盖,但膜的本体结构无明显变化.将改性后的膜用于真空膜蒸馏淡化模拟海水的试验中,结果表明在雷诺数较小的情况下,改性膜的脱盐率达99.99%,通量达4530ml/(m2·h).  相似文献   

3.
Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 ± 3%; pore size = 250–500 μm) had a compressive strength of 6.4 ± 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K2HPO4 solution at 37 °C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.  相似文献   

4.
董浩  叶建东  王秀鹏 《功能材料》2006,37(11):1805-1807,1811
磷酸钙骨水泥组织工程支架材料具有良好的生物相容性和骨传导性,是一种良好的骨组织工程支架材料,但是这种材料存在力学性能差的缺点,限制了它的应用.本文采用生物相容性良好的可降解明胶材料与磷酸钙骨水泥支架进行复合,制备出的明胶/磷酸钙骨水泥复合支架材料,其压缩强度可达3.7MPa,比复合前磷酸钙支架材料的强度提高了37倍,而且材料具有良好的柔韧性,适合用作为非承重部位骨组织缺损修复用组织工程支架材料.  相似文献   

5.
溶剂型聚氨酯鞋用胶粘剂的合成及工艺研究   总被引:2,自引:1,他引:1  
采用聚酯二元醇、1,4 丁二醇、1,6 -己二异氰酸酯以及丁酮为主要原料 ,合成溶剂型单组分聚氨酯胶粘剂。考察了原料配比、催化剂等对聚氨酯胶粘剂合成反应及性能的影响。结果表明 ,在溶液法合成中 ,加入适当的扩链剂可有效改善聚氨酯胶粘剂的初始剥离强度及综合性能 ,而自制的催化剂能有效降低反应活化能 ,缩短了合成反应时间。  相似文献   

6.
Introduction: Behenyltrimethylammonium chloride (BTAC) and stearic acid (SA) could be associated with each other through salt bridges, and the associated BTAC/SA could build bilayer vesicles with the aid of hinokitiol (HKL). Method: The vesicles were prepared by a precipitation method and used to enhance the skin permeation of HKL. Results: In case the molar ratio of BTAC/SA/HKL was 1/1/0, no vesicle was observed on transmission electron microscope photos. When the molar ratio of BTAC/SA/HKL was 1/1/0.4, vesicle was observed together with some agglomerates. When the content of HKL increased to the ratios of 1/1/0.8 and 1/1/1.2, vesicles were exclusively observed. In vitro fluxes for 18 hours through hairless mouse skin of HKL dissolved in alcoholic solutions were less than 1 mg/cm2/h. Whereas the fluxes of HKL encapsulated in the vesicles were about three times higher than that of HKL in the alcoholic solutions. Conclusion: The vesicles could be used for the hair growth promotion.  相似文献   

7.
Enhancement of the dissolution rate of the poorly water-soluble hypoglycemic agent, gliclazide, by the aid of lyophilization was investigated. Mannitol, sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP-k-30) were employed in different weight ratios (43%, 56% and 64% w/w, respectively) as water-soluble excipients in the formulation. Lyophilized systems were found to exhibit extremely higher in vitro dissolution rate compared to the unprocessed drug powder. Solid state characterization of the lyophilized systems using X-ray powder diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry techniques revealed that dissolution enhancement was attributable to transformation of gliclazide from the crystalline to an amorphous state in the solid dispersion formed during the lyophilization process. The gastrointestinal absorption and hypoglycemic effect of the lyophilized gliclazide/SLS system were investigated following oral administration to Albino rabbits. Cmax and area under the plasma concentration–time curve of gliclazide (AUC0–12) after administration of the lyophilized formulations were significantly higher than those obtained after administration of the unprocessed gliclazide.  相似文献   

8.
Objective: The objective of this study is to test the hypothesis that the phase transition temperature (Tm), the main property of liposomes, can be easily controlled by changing the molar ratio of hydrogenated soy phosphatidylcholine (HSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphacholine (DPPC) after drug encapsulation.

Materials and methods: Brucine, an antitumor alkaloid, was encapsulated into the liposomes with different HSPC/DPPC compositions. The Tms of the brucine-loaded liposomes (BLs) were determined by differential scanning calorimetry (DSC). Then the physicochemical properties and pharmacokinetics of the BLs with different HSPC/DPPC compositions were investigated and compared.

Results: The results of DSC revealed that HSPC and DPPC can combine into one phase. The findings of molecular modeling study suggested that HSPC interacts with DPPC via electrostatic interaction. The molar ratio of HSPC/DPPC influenced the sizes of BLs but had little effect on the entrapment efficiency (EE). The stability of BLs was improved with the increase of the HSPC ratios, especially with the presence of plasma. Following i.v. administration, it was found that AUC values of BLs in vivo were directly related to the HSPC/DPPC ratios of BLs, namely the Tms of BLs.

Discussion: The behavior of liposomes, especially in vivo pharmacokinetic behavior, can be controlled by the modification of Tm.

Conclusion: The characterization of BLs in vitro and in vivo had demonstrated that the Tm could be flexibly modified for liposomes composed of both HSPC and DPPC. Using HSPC/DPPC composition may be an efficient strategy to control the Tm, thus control the in vivo pharmacokinetic behavio, of BLs.  相似文献   


9.
Background: The development of an efficient targeted drug delivery system into cells is an important subject for the advancement of drug carriers. In this study, a novel hepatocyte-targeted delivery system with glycyrrhizin (GL) surface modification based on N-caproyl chitosan (CCS) has been developed. Method: CCS was synthesized by acylation of amino group of chitosan, and GL was oxidized to be conjugated to the surface of N-caproyl chitosan nanoparticles (CCS-NPs-GL). The synthesized nanoparticles were first characterized for their morphology, particle size, zeta potential, in vitro stability in plasma, tissue distribution, and hepatocyte-targeting uptake in vivo. Results: The obtained results showed that the spherical and discrete nanoparticles prepared with oxidized GL/CCS ratio of 0.14:1 (w/w) exhibited a positive electrical charge and associated adriamycin quite efficiently (association efficiency: 87.5%). The prepared nanoparticles also possessed dimensional and GL surface-binding stability and slow release property in plasma in vitro. The biodistribution of these particles after intravenous injections in mice revealed accumulating drug concentrations in the liver, spleen, and lungs while decreasing drug concentrations in the heart and kidney. The content of adriamycin-loaded CCS-NPs-GL in the liver was 1.6 times higher than that of non-GL-modified CCS-NPs. Furthermore, in vivo uptake of CCS-NPs-GL by rat hepatocytes showed 2.1 times higher nanoparticle uptake compared with non-GL-modified CCS-NPs, which suggested that CCS-NPs-GL were preferentially distributed in hepatocytes by a ligand–receptor interaction. Conclusion: This article indicated that CCS-NPs-GL was a stable and effective drug delivery vehicle for hepatocyte targeting.  相似文献   

10.
Puerarin, which is extracted from Chinese medicine, is widely used in China and mainly used as a therapeutic agent for the treatment of cardiovascular diseases. Owing to its short elimination half-life in human beings, frequently intravenous administration of high doses of puerarin may be needed, which possibly leads to severe and acute side effects. The development of an effective sustained-release drug delivery system is urgently needed. In this study, PEGylated mesoporous silica nanoparticles (PEG-MSNs) had become a preferred way to prolong the half-life and improve the bioavailability of drugs. The release of puerarin from PEG-MSNs was pH dependent, and the release rate was much faster at lower pH than that at higher pH. Moreover, the PEG-MSNs exhibited improved blood compatibility over the MSNs in terms of low hemolysis, and it could also reduce the side effect of hemolysis induced by PUE. Compared with puerarin, PUE-loaded PEG-MSNs showed a 2.3-fold increase in half-life of puerarin and a 1.47-fold increase in bioavailability. Thus, the PEG-MSNs hold the substantial potential to be further developed as an effective sustained-release drug delivery system.  相似文献   

11.
Central venous access devices (CVADs) aid in the delivery of nutritional support, infusion therapy, and hemodialysis. Maintaining continuous flow through these devices is challenging, because they are susceptible to complications such as thrombi occlusion. Therefore, CVADs may require treatment with anticoagulant or thrombolytic agents. Using these agents as locking solutions has been widely investigated; however, few publications have described the compatibility of the therapeutic with the CVAD itself. The objective of this investigation was to evaluate the in vitro stability and compatibility of a thrombolytic biologic agent, tenecteplase, with various CVAD materials. Tenecteplase was reconstituted to 1 mg/mL with either sterile water for injection or bacteriostatic water for injection (0.9% benzyl alcohol) then incubated in glass vials, polysulfone/silicone vascular access ports, and polyurethane or silicone catheters for up to 96 hours. Biochemical assays including protein monomer, protein one-chain, and in vitro bioactivity were used to assess tenecteplase's compatibility with the investigated diluents and materials every 24 hours. Antimicrobial testing was also performed for up to 28 days on bacteriostatic water for injection-reconstituted samples only. Our results showed tenecteplase to be compatible with both types of diluents (in glass vials) and catheters for up to 72 hours. Furthermore, tenecteplase was compatible with the polysulfone/silicone vascular access ports for up to 24 hours. Finally, bacteriostatic water for injection-reconstituted tenecteplase effectively met USP criteria for the inhibition of growth of micro-organisms. This study serves as an example of a best practice to evaluate the in vitro stability and compatibility of a biologic agent with CVAD materials.  相似文献   

12.
This study evaluates the biological behaviour, in vitro and in vivo, of silicated hydroxyapatite with and without insulin adsorbed on the material surface. Insulin was successfully adsorbed on hydroxyapatite and silicated hydroxyapatite bioceramics. The modification of the protein secondary structure after the adsorption was investigated by means of infrared and circular dichroism spectroscopic methods. Both results were in agreement and indicated that the adsorption process was likely to change the secondary structure of the insulin from a majority of α-helix to a β-sheet form. The biocompatibility of both materials, with and without adsorbed insulin on their surface, was demonstrated in vitro by indirect and direct assays. A good viability of the cells was found and no proliferation effect was observed regardless of the material composition and of the presence or absence of insulin. Dense granules of each material were implanted subcutaneously in mice for 1, 3 and 9 weeks. At 9 weeks of implantation, a higher inflammatory response was observed for silicated hydroxyapatite than for pure hydroxyapatite but no significant effect of adsorbed insulin was detected. Though the presence of silicon in hydroxyapatite did not improve the biological behaviour, the silicon substituted hydroxyapatite remained highly viable.  相似文献   

13.
Abstract

This work examines the release of diclofenac sodium from ethylcellulose (EC) microcapsules made up of different drug to polymer ratios. The release process was found to follow the Higuchi square root equation and not the zero-order or first order equations. However, for drug to polymer ratio of 1:1, a critical time (θ) was reached beyond which the release rate was lower than that predicted on the basis of the Higuchi square root equation. Dissolution experiments in 0.1N HCL revealed that less than 1.5% of the encapsulated drug was released in 6 h. This finding indicates the suitability of the EC microcapsules for enteric-coated preparations. The in vitro release of diclofenac sodium from microcapsules of different drug to polymer ratios was compared with that from a commercial sustained-release product. A distinct similarity between the release profile of the commercial product with that obtained for the 1:2 drug to polymer microcapsules was noted. The in vivo work included determination of the serum drug profile following oral administration of the microcapsules and the commercial product to rabbits. The obtained serum concentration time profile of the EC microcapsules exhibited a sustained-release pattern similar to the commercial product and consistent with the in vitro results.  相似文献   

14.
软骨细胞在聚乳酸支架中的体外生长行为   总被引:2,自引:0,他引:2  
采用明胶和氯化钠颗粒作为致孔剂,使用溶剂浇铸/颗粒沥滤法制备了高孔隙率、孔间连通和高机械性能的聚乳酸支架,采用软骨细胞体外培养研究了这两种多孔支架对细胞生长性能的影响.结果表明,软骨细胞在以明胶颗粒为致孔剂制备的多孔支架中的相对数量和GAG的分泌量更多,细胞的活性更高。  相似文献   

15.
Context: Our group previously reported the photoinstability of some desonide topical commercial formulations under direct exposure to UVA radiation.

Objective: This study aimed to prepare and characterize a gel-cream containing desonide, with greater photostability than the commercial gel-cream (C-GC). Benzophenone-3 (BP-3) was used as a photostabilizing agent.

Methods: The gel-cream developed (D-GC) containing BP-3 at 0.1% was prepared and characterized regarding its pH, drug content, spreadability, viscosity, in vitro drug release and in vitro permeation. The in vivo anti-inflammatory effect was assessed by ear edema measurement, croton oil-induced acute skin inflammation and myeloperoxidase assay.

Results and Discussion: D-GC presented characteristics compatible with topical application, appropriate drug content and good spreadability, and non-Newtonian behavior with pseudoplastic flow. D-GC showed a good photostability profile, presenting a desonide content of 95.70% after 48?h of exposure to UVA radiation, and stability under room conditions during 60 days. The amount of desonide released from D-GC and C-GC was 57.8 and 51.7?µg/cm2, respectively, measured using the vertical Franz cell. The in vitro skin permeation showed that desonide reached the site of action of the topical corticosteroids, from both formulations; however, the desonide amount retained in the dermis was lower with D-GC. The in vivo evaluation of topical anti-inflammatory activity indicated that D-GC presented the same biological effect as C-GC.

Conclusion: D-GC represents a promising approach to treat dermatological disorders, since it presented satisfactory physicochemical characteristics, the same biological activity as C-GC and superior photostability, conferred by the addition of BP-3 at 0.1%.  相似文献   

16.
A system that can deliver multi-drugs at a prolonged rate is very important to the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Two controlled-release systems, which exhibited similar release profiles of metformin and glipizide, i.e., elementary osmotic pump tablets (EOP) and bilayer hydrophilic matrix tablet (BT), were designed. The effects of pH and hydrodynamic conditions on drug release from two formulations were investigated. It was found that both drug releases from EOP were not sensitive to dissolution media pH and hydrodynamics change, while the release of glipizide from BT was influenced by the stirring rate. Moreover, in vivo evaluation was performed, relative to the equivalent dose of conventional metformin tablet and glipizide tablet, by a three-crossover study in six Beagle dogs. Cumulative percent input in vivo was compared to in vitro release profiles. The linear correlations of metformin and glipizide between fraction absorbed in vivo and fraction dissolved in vitro were established for EOP—a true zero-order release formula, whereas only nonlinear correlations were obtained for BT. In conclusion, drug release from EOP was both independent of in vitro and in vivo conditions, where the best sustained release effect was achieved, whereas the in vitro dissolution test employed for BT needed to be further optimized to be biorelevant.  相似文献   

17.
Tricalcium silicate (Ca3SiO5) cement, a novel self-setting biomaterial, has been shown to exhibit good hydraulic properties and excellent bioactivity. In this study, gentamicin sulfate (GS) was integrated into cement pastes and in vitro release of GS from the Ca3SiO5 cement was performed in deionized water, phosphate buffer saline (PBS) and HCl solutions with different pH at 37 °C, respectively. The results showed that the initial fast release of GS was restricted to a low level and prolonged release of drugs was achieved in water and PBS. The prolonged GS release is attributed to the interaction of GS with the calcium silicate hydrate network and the formation of unique nano-to-micro porous structure after hydration. Furthermore, GS release from milled powders of the hydrated cement suggested that the constrained GS could be released at low pH environment or during the degradation of the cement. When the samples were soaked in PBS, a nano-structured apatite layer was formed on the surface of the cement, which resulted in a relatively lower GS release rate as compared to that in water. The results suggest that Ca3SiO5 cement might be used as bioactive bone implant materials with drug loading and prolonged release properties.  相似文献   

18.
Objective: Ocular bioadhesive minitablets containing gentamicin and vancomycin were developed using different powder mixtures of pregelatinized starch and Carbopol (physical or cospray-dried mixtures). Methods: Drug content, antimicrobial activity, and radical formation of the powders used for tablet preparation were evaluated immediately and 30 days after gamma sterilization. Tablet properties and in vitro drug release from the sterilized minitablets were determined. Storage stability of vancomycin and gentamicin in sterilized bioadhesive mixtures was examined by LC–UV/MS and a microbiological assay, respectively. A bioadhesive powder mixture containing only vancomycin was irradiated by X electron-magnetic radiation to evaluate vancomycin stability following sterilization through irradiation. Results: The antimicrobial activity of gentamicin against Staphylococcus epidermidis was not altered in comparison to nonsterilized formulations. Only after an overkill dose of 50 kGy, the concentration of vancomycin decreases to an extent that was pharmaceutically significant. No significant difference in radiation stability between drug substance and product (i.e., powder mixture) was observed. A shift in stability profile was not observed at 6 weeks after irradiation. All other degradation products were present only in small quantities not exceeding 1.0%. The in vitro drug release from the minitablets prepared with physical powder mixtures of pregelatinized starch and Carbopol® 974P NF (96 : 4) was faster compared to the cospray-dried mixtures of starch with Carbopol® 974P NF (ratio: 95:5 and 85:15). The electron paramagnetic resonance signals of the radicals formed during sterilization were still visible after storage for 30 days. The slug mucosal irritation test indicated mild irritation properties of the bioadhesive powder mixtures although no tissue damage was observed.  相似文献   

19.
Human dental tissues consist of inorganic constituents (mainly crystallites of hydroxyapatite, HAp) and organic matrix. In addition, synthetic HAp powders are frequently used in medical and chemical applications. Insights into the ultrastructural alterations of skeletal hard tissues exposed to thermal treatment are crucial for the estimation of temperature of exposure in forensic and archaeological studies. However, at present, only limited data exist on the heat-induced structural alterations of human dental tissues. In this paper, advanced non-destructive small- and wide angle X-ray scattering (SAXS/WAXS) synchrotron techniques were used to investigate the in situ ultrastructural alterations in thermally treated human dental tissues and synthetic HAp powders. The crystallographic properties were probed by WAXS, whereas HAp grain size distribution changes were evaluated by SAXS. The results demonstrate the important role of the organic matrix that binds together the HAp crystallites in responding to heat exposure. This is highlighted by the difference in the thermal behaviour between human dental tissues and synthetic HAp powders. The X-ray analysis results are supported by thermogravimetric analysis. The results concerning the HAp crystalline architecture in natural and synthetic HAp powders provide a reliable basis for deducing the heating history for dental tissues in the forensic and archaeological context, and the foundation for further development and optimization of biomimetic material design.  相似文献   

20.
The objective of this study was to develop a nanoparticulate drug delivery system based on the surface modification of poly(lactide-co-glycolide) (PLGA) nanoparticles with a thiolated chitosan. PLGA nanoparticles were prepared by the emulsification-solvent evaporation method. Immobilization of chitosan to the surface of PLGA nanoparticles via amide bonds was mediated by a carbodiimide. Thiol groups were covalently bound to the chitosan surface of particles by reaction with 2-iminothiolane. Obtained nanoparticles were characterized in vitro regarding size, zeta potential, thiol group content, stability at different pH values, mucoadhesion, and drug release. Results demonstrated that the surface modification of PLGA nanoparticles with thiolated chitosan (chitosan-TBA) leads to nanoparticles of a mean diameter of 889.5 ± 72 nm and positive zeta potential of + 24.74 mV. The modified nanoparticles contained 7.32 ± 0.24 μmol thiol groups per gram nanoparticles. The size of nanoparticles was strongly influenced by the pH of the surrounding medium, being 925.0 ± 76.3 nm at pH 2 and 577.8 ± 66.7 nm at pH 7.4. Thiolated nanoparticles showed a 3.3-fold prolonged residence time on the mucosa and an unchanged release profile in comparison to unmodified PLGA nanoparticles. These data suggest that surface modified chitosan-TBA conjugate PLGA nanoparticles have the potential to be used as mucoadhesive drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号