首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present experimental investigation, stable CuO–Base oil nanofluids with different particle weight fractions of 0.2% to 2% are prepared. Then, these fluids are used for heat transfer measurements as well as rheological behavior investigation. Density, thermal conductivities, viscosities and specific heat capacities of base fluid and all nanofluids at different temperatures are measured and the effect of nanoparticles concentration on fluid properties is investigated. Also, heat transfer characteristics of CuO–Base oil nanofluids laminar flow in a smooth tube under constant heat flux are studied experimentally. Experimental results clearly indicate that addition of nanoparticles into the base fluid enhances the thermal conductivity of the fluid and the enhancement increases with increasing of particle concentration. For the particle concentrations tested, nanofluids exhibit Newtonian behavior. It is observed that the dynamic viscosity substantially increases with the increase in nanoparticle concentration and this increase is more pronounced at the lower temperatures of the nanofluid. The specific heat capacity of nanofluids is significantly less than that of base fluid and it is decreased with the increase in nanofluid concentration. The results show that for a specific nanoparticle concentration, there is an increase in heat transfer coefficient of nanofluid flow compared to pure oil flow. A maximum increase of 12.7% in Heat Transfer coefficient was observed for 2 wt.% nanofluid at the highest Reynolds number studied in this investigation. Furthermore, heat transfer coefficients obtained using experimental fluid properties are compared to those obtained using the existing theoretical models for fluid properties.  相似文献   

2.
The hybrid nanofluid has been thriving among researchers due to its potential to improve heat transfer performance. Therefore, various studies on heat transfer properties need to be carried out to provide a better understanding on hybrid nanofluid performance. In this paper, the experimental work is focused on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in a mixture of water and ethylene glycol (EG) with volume ratio of 60:40. The stable suspension of TiO2-SiO2 prepared at volume concentrations of 0.5 to 3.0%. The measurements of thermal conductivity and dynamic viscosity were performed at a temperature range of 30 to 80 °C by using KD2 Pro Thermal Properties Analyser and Brookfield LVDV III Ultra Rheometer, respectively. The thermal conductivity of TiO2-SiO2 nanofluids was improved by increasing the volume concentration and temperature with 22.8% maximum enhancement. Besides, the viscosity of TiO2-SiO2 nanofluids showed evidence of being influenced by nanofluid concentration and temperature. Additionally, the TiO2-SiO2 nanofluids behaved as a Newtonian fluid for volume concentration up to 3.0%. The properties enhancement ratio suggested that TiO2-SiO2 nanofluids will aid in heat transfer for concentrations of more than 1.5% and within the range of the temperature studied. A new correlation for thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids were developed and found to be precise.  相似文献   

3.
Heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside typical radial flow cooling systems are numerically investigated in this paper. The laminar forced convection flow of these nanofluids between two coaxial and parallel disks with central axial injection has been considered using temperature dependent nanofluid properties. Results clearly indicate that considerable heat transfer benefits are possible with the use of these fluid/solid particle mixtures. For example, a Water/Al2O3 nanofluid with a volume fraction of nanoparticles as low as 4% can produce a 25% increase in the average wall heat transfer coefficient when compared to the base fluid alone (i.e., water). Furthermore, results show that considerable differences are found when using constant property nanofluids (temperature independent) versus nanofluids with temperature dependent properties. The use of temperature-dependent properties make for greater heat transfer predictions with corresponding decreases in wall shear stresses when compared to predictions using constant properties. With an increase in wall heat flux, it was found that the average heat transfer coefficient increases whilst the wall shear stress decreases for cases using temperature-dependent nanofluid properties.  相似文献   

4.
Stable aqueous TiO2 nanofluids with different particle (agglomerate) sizes and concentrations are formulated and measured for their static thermal conductivity and rheological behaviour. The nanofluids are then measured for their heat transfer and flow behaviour upon flowing upward through a vertical pipe in both the laminar and turbulent flow regimes. Addition of nanoparticles into the base liquid enhances the thermal conduction and the enhancement increases with increasing particle concentration and decreasing particle (agglomerate) size. Rheological measurements show that the shear viscosity of nanofluids decreases first with increasing shear rate (the shear thinning behaviour), and then approaches a constant at a shear rate greater than ∼100 s−1. The constant viscosity increases with increasing particle (agglomerate) size and particle concentration. Given the flow Reynolds number and particle size, the convective heat transfer coefficient increases with nanoparticle concentration in both the laminar and turbulent flow regimes and the effect of particle concentration seems to be more considerable in the turbulent flow regime. Given the particle concentration and flow Reynolds number, the convective heat transfer coefficient does not seem to be sensitive to the average particle size under the conditions of this work. The results also show that the pressure drop of the nanofluid flows is very close to that of the base liquid flows for a given Reynolds number.  相似文献   

5.
In this article, forced convection heat transfer with laminar and developed flow for water-Al2O3 nanofluid inside a circular tube under constant heat flux from the wall was numerically investigated using computational fluid dynamics method. Both single and two-phase models are accomplished for either constant or temperature dependent properties. For this study nanofluids with size particles equal to 100 nm and particle concentrations of 1 and 4 wt% were used. It is observed that the nanoparticles when dispersed in base fluid such as water enhance the convective heat transfer coefficient. The Nusselt number and heat transfer coefficient of nanofluids were obtained for different nanoparticle concentrations and various Reynolds numbers. Heat transfer was enhanced by increasing the concentration of nanoparticles in nanofluid and Reynolds number. Also, a correlation based on the dimensionless numbers was obtained for the prediction the Nusselt number. The modeling results showed that the predicted values were in very good agreement with reference experimental data.  相似文献   

6.
The present study aims to identify effects due to convection heat transfer in a tube. Turbulent and laminar forced convection flow of a water–Al2O3 nanofluid in a tube subjected to a constant and uniform temperature at the wall was numerically analyzed. The single-phase model was employed to simulate the nanofluid convection, taking into account appropriate thermophysical properties. Particles are assumed spherical with a diameter equal to 24 nm. Simulations have been carried out for the pertinent parameters in the following ranges: Reynolds number from 103 to 105 and volumetric fraction of alumina nanoparticles between 0 to 4%. It is found that convective heat transfer coefficient for nanofluids is greater than that of the base liquid. Heat transfer enhancement is increasing with the particle volume concentration and Reynolds number. As for the friction factor, it shows a good agreement with the classical correlation used for normal fluid, such as the Blasius formula. Moreover, a study on wall shear stress was attempted.  相似文献   

7.
The present study aims to identify effects due to uncertainties in effective dynamic viscosity and thermal conductivity of nanofluid on laminar natural convection heat transfer in a square enclosure. Numerical simulations have been undertaken incorporating a homogeneous solid–liquid mixture formulation for the two-dimensional buoyancy-driven convection in the enclosure filled with alumina–water nanofluid. Two different formulas from the literature are each considered for the effective viscosity and thermal conductivity of the nanofluid. Simulations have been carried out for the pertinent parameters in the following ranges: the Rayleigh number, Raf = 103–106 and the volumetric fraction of alumina nanoparticles, ? = 0–4%. Significant difference in the effective dynamic viscosity enhancement of the nanofluid calculated from the two adopted formulas, other than that in the thermal conductivity enhancement, was found to play as a major factor, thereby leading to contradictory results concerning the heat transfer efficacy of using nanofluid in the enclosure.  相似文献   

8.
The heat transfer effectiveness of nanofluids is adversely affected by the delay in convection onset. The lesser effectiveness, when compared to that of base fluid, is observed in a range of nanofluid layer thickness. The heat transfer coefficient of water–Al2O3 nanofluid can be enhanced by sustaining the equilibrium between Rayleigh number, temperature, particle volume fraction, and enclosure aspect ratio. In this paper, the specific correlation of fluid layer thickness and the onset of convection, which can significantly dominate the heat transfer characteristics of nanofluids are investigated using the concept of critical Rayleigh number. The water layer thickness for convection onset is first experimentally assessed for different real-life heat flux densities. It is then performed for Al2O3–water nanofluid for varying volume fractions. With the increase in volume fraction even though thermal conductivity increases, the overall heat transfer enhancement of the nanofluid is reduced. Temperature involved (heat flux density), the volume fraction of the nanofluid used, nanofluid layer thickness (space availability for the cooling system), and mass of the nanoparticle influence heat transfer enhancement. A higher volume fraction may not always result in enhancement of heat transfer as far as nanofluids are concerned.  相似文献   

9.
In this study an experimental investigation has been carried out to analyze the laminar forced convection of Al2O3/water and multiwall carbon nanotubes (MWCNT)/water nanofluids through uniformly heated horizontal circular pipe with helical twisted tape inserts. Tests were conducted for varied range of nanoparticle volume concentration (0.15%, 0.45%, 0.60%, and 1%) and helical tape inserts of twist ratios of 1.5, 2.5, and 3. The heat transfer enhancement and the increase of friction factor of nanofluids with helical inserts are compared with that of pure water results with plain tube without inserts. The Nusselt number is found to increase with the increase in Peclet number and nanofluid concentration. The MWCNT/water nanofluids with helical screw tape inserts exhibits higher thermal performance compared to Al2O3/water nanofluid. The maximum thermal performance factor was found to be 1.79 and 1.99 for Al2O3/water and MWCNT/water nanofluids with helical twisted tape inserts, respectively. The pressure drop for Al2O3 nanofluid is found to be higher compared to the MWCNT nanofluid for all the twist ratio of helical screw tape inserts.  相似文献   

10.
Natural convection inside a triangular solar collector is investigated numerically for different nanofluids and hybrid nanofluids in this study. The individual effects of Al2O3–water, carbon nanotubes (CNT)–water, and Cu–water nanofluids are observed for different solid volume fractions of nanoparticles (0%–10%). Three types of hybrid nanofluids are prepared using different ratios of Al2O3, CNT, and Cu nanoparticles in water. A comparison is made varying the Rayleigh numbers within laminar range (103–106) for different tilt angles (0°, 30°, 60°, and 90°) of the solar collector. The inclined surface of the triangular solar collector is isothermally cold and the bottom wall (absorber plate) is isothermally hot, whereas the vertical wall with respect to the absorber plate is considered adiabatic. Average Nusselt numbers along the hot wall for different parameters are observed. Streamlines and isotherm contours are also plotted for different cases. Dimensionless governing Navier–Stokes and thermal energy conservation equations are solved by Galerkin weighted residual finite element method. Better convective heat transfer is found for higher Rayleigh number, solid volume fraction, and tilt angle. In the case of hybrid nanofluid, increasing the percentage of the nanoparticle that gives better heat transfer performance individually results in enhancing natural convection heat transfer inside the enclosure.  相似文献   

11.
Heat transfer characteristics of Fe2O3/water and Fe2O3/EG nanofluids were measured in a shell and tube heat exchanger under laminar to turbulent flow condition. In the shell and tube heat exchanger, water and ethylene glycol-based Fe2O3 nanofluids with 0.02%, 0.04%, 0.06% and 0.08% volume fractions were used as working fluids for different flow rates of nanofluids. The effects of Reynold's number, volume concentration of suspended nanoparticles and different base fluids on the heat transfer characteristics were investigated. Based on the results, adding nanoparticles to the base fluid causes a significant enhancement of the heat transfer characteristics and thermal conductivity. This enhancement was investigated with regard to various factors; concentration of nanoparticles, types of base fluids, sonication time and temperature of fluids. In this paper, the effect of Fe2O3 nanoparticles on the thermal conductivity of base fluids like ethylene glycol and water was studied. The thermal conductivity measurement was made for different concentrations and temperatures. As the concentration of the nanoparticles increased, there was a significant enhancement in thermal conductivity and overall heat transfer due to more interaction between particles. It was also observed that there was an improvement in the thermal conductivity of the base fluid as the temperature increased. The measurements also showed that the pressure drop of nanofluid was higher than that of the base fluid in a turbulent flow regime. However, there was no significant increase in pressure drop at laminar flow.  相似文献   

12.
In a comprehensive study, the thermal conductivity, dynamic viscosity, and the rheological behavior of a SiO2/water nanofluid are investigated experimentally at the temperatures, solid concentrations, and the shear rates of 25°C to 50°C, 0% to 1.5%, and 400 to 1400(s?1), respectively. The Response Surface Methodology (RSM) is utilized to obtain regression models for the thermal conductivity and the dynamic viscosity. Subsequently, the sensitivity of the aforementioned models to 10% changes in the temperature, and the nanofluid concentration is analyzed. Afterward, Nondominated Sorting Genetic Algorithm II (NSGA‐II) is utilized to find the maximum thermal conductivity and the minimum viscosity. The nondominated optimal points are presented through a fitted correlation on a Pareto front to make the results more practical. The measurements of the investigated nanofluid could be summarized as a paper of a handbook. The workability of the investigated nanofluid is also examined in both laminar and turbulent flow regimes through analysis of the heat transfer merit graphs. To this end, the ratio of the dynamic viscosity enhancement to the thermal conductivity enhancement and the Mouromtseff number are chosen as two criteria of the laminar and turbulent flow regimes, respectively. Finally, the results are compared with those for SiO2/glycerin and SiO2/ethylene glycol nanofluids to check the workability in different base fluids. From a thermal‐efficiency point of view, the SiO2/water nanofluid is not suggested for use in both laminar and turbulent pipe flows, except in temperatures higher than 30°C and volume concentrations lower than 1% for the case of laminar flow. This is because the favorable heat transfer enhancement of the nanofluid is more than the unfavorable increase of the pumping power. From the rheological point of view, though, a SiO2/water nanofluid would be a good choice in lubricating moving surfaces for both laminar and turbulent flow regimes. It is found that in higher nanofluid concentrations, the thermal conductivity of a SiO2/water nanofluid is highly influenced by temperature. Moreover, adding nanoparticles at temperatures of 35°C to 40°C would have the highest increasing effect on the thermal conductivity. It is also revealed that increasing the temperature does not significantly affect the viscosity when 1% SiO2 nanoparticles are suspended within the water.  相似文献   

13.
We have measured the pressure drop and convective heat transfer coefficient of water-based Al2O3 nanofluids flowing through a uniformly heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for nanofluid friction factor show a good agreement with analytical predictions from the Darcy’s equation for single-phase flow. However, the convective heat transfer coefficient of the nanofluids increases by up to 8% at a concentration of 0.3 vol% compared with that of pure water and this enhancement cannot be predicted by the Shah equation. Furthermore, the experimental results show that the convective heat transfer coefficient enhancement exceeds, by a large margin, the thermal conductivity enhancement. Therefore, we have discussed the various effects of thermal conductivities under static and dynamic conditions, energy transfer by nanoparticle dispersion, nanoparticle migration due to viscosity gradient, non-uniform shear rate, Brownian diffusion and thermophoresis on the remarkable enhancement of the convective heat transfer coefficient of nanofluids. Based on scale analysis and numerical solutions, we have shown, for the first time, the flattening of velocity profile, induced from large gradients in bulk properties such as nanoparticle concentration, thermal conductivity and viscosity. We propose that this flattening of velocity profile is a possible mechanism for the convective heat transfer coefficient enhancement exceeding the thermal conductivity enhancement.  相似文献   

14.
The momentum and forced convection heat transfer for a laminar and steady free stream flow of nanofluids past an isolated square cylinder have been studied numerically. Different nanofluids consisting of Al2O3 and CuO with base fluids of water and a 60:40 (by mass) ethylene glycol and water mixture were selected to evaluate their superiority over conventional fluids. Recent correlations for the thermal conductivity and viscosity of nanofluids, which are functions of particle volumetric concentration as well as temperature, have been employed in this paper. The simulations have been conducted for Pe = 25, 50, 100 and 200, with nanoparticle diameters of 30 and 100 nm and particle volumetric concentrations ranging from 0% to 4%. The results of heat transfer characteristics of nanofluid flow over a square cylinder showed marked improvement comparing with the base fluids. This improvement is more evident in flows with higher Peclet numbers and higher particle volume concentration, while the particle diameter imposes an adverse effect on the heat transfer characteristics. In addition, it was shown that for any given particle diameter there is an optimum value of particle concentration that results in the highest heat transfer coefficient.  相似文献   

15.
Cavity design is an important aspect in thermal systems, and proper cavity design saves plenty of energy as losses are minimised through better design. In this work, the influence that the Aspect Ratio (AR) of a rectangular cavity filled with nanofluids has on the natural convection process is studied experimentally. Three different cavities with the AR of 1, 2 and 4 are fabricated, and the heat transfer performance is studied using two different fluids namely de-ionised water and Al2O3/Water nanofluids. It is found that the AR of the cavity has a significant effect on the heat transfer coefficient and Nusselt number. More importantly, the optimum nanofluid concentration for maximum heat transfer varies with the AR of the cavity. It also found that the Rayleigh number has a strong effect on the Nusselt number as well as nanofluid buoyancy.  相似文献   

16.
Three concentrations of 0.2, 0.6, and 1.0 vol.% Copper/25 nm and silica/22 nm nanofluids are prepared in a base liquid glycerol–water mixture of 30:70 ratio by volume (GW70). The thermophysical properties of Cu and SiO2 nanofluids are determined with a TPS500S hot disc thermal analyzer and Brookfield viscometer in the temperature range of 20–80°C. The maximum enhancement in Cu and SiO2 nanofluid viscosity (63.4%, 35.7%), thermal conductivity (100.4%, 71.3%), and density (7.5%, 1.5%) while specific heat (7.8%, 2.3%) determined for 1.0% concentration at 80°C compared to base liquid GW70. Heat transfer experiments are conducted in a short-length double pipe heat exchanger. The flow rates resulted in the lamifnar entry length region. A maximum enhancement in the overall heat transfer coefficient (HTC; 25.0%, 19.7%) and convective HTC (46.2%, 34.8%), respectively for Cu and SiO2 nanofluids is estimated at 1.0% concentration compared to base liquid at a bulk temperature of 35°C.  相似文献   

17.
Abstract

In former theoretical researches of nanofluid flows, numerical investigations could not agree with experimental observations, particularly regarding whether the mixing nanoparticles will enhance or deteriorate the heat transfer. In the present work, thermal driven buoyancy flows of nanofluids in a square enclosure were modeled by the use of homogeneous assumptions and the effective kinematic viscosity and thermal conductivity formulas. Thoroughly developed heat transfer coefficient is subsequently proposed, aiming to critically evaluate the performance of nanofluid heat transport. Numerical results are presented over a wide range of thermal Rayleigh number (103 ≤ Ra ≤ 106) and nanoparticles volume fraction (0.001 ≤ φ?≤?0.04). Present modeling results accurately predict both the enhancement and deterioration of the natural convection heat transfer, fully validated by former experimental observations. Overall, mathematical models and Nusselt number definitions proposed in the present work effectively enhance the reliability of numerical modeling researches on the nanofluid heat transfer. Present clarification research on the Nusselt unifications could benefit future development of thermal carrier fluid enhanced by nano-particles.  相似文献   

18.
The resent development of research in the field of nano technology introduced hybrid nanofluids which are advanced classes of fluids with augmented thermal properties and it gives better results comparing to regular nanofluid. The aim of the present work is to study the significant effects of variable viscosity and viscous dissipation on a porous stretching sheet in the presence of hybrid nanofluid and radiative heating. In this model, two types of nanoparticles, namely copper (Cu) and alumina oxide (Al2O3), are suspended in the base fluid H2O to form a hybrid nanoliquid. The novelty of this study is to introduce variable viscosity along with natural convection in the momentum equation and viscous dissipation in the energy equation. Mathematical modeling is employed in this study, whereby partial differential equations for the fluid flow are constructed and transformed to a set of ordinary differential equations, and hence resolved computationally by Runge‐Kutta‐Fehlberg method along with shooting scheme. The most important results for relevant parameters concerning the flow heat measure, surface drag, and heat transfer coefficients are thoroughly examined and presented graphically for both Cu‐Al2O3/water hybrid nanofluids. There is an increase in hybrid nanofluid velocity profile with mounting values of λ , and the Cu‐water nanofluid converges to the boundary more quickly than the hybrid nanofluid due to the occurrence of variable viscosity. The results concluded that the Nusselt number of the viscous fluid is lower than that of the nanofluid and hence the hybrid nanofluid (ie, heat transfer rate: normal fluid < nanofluid < hybrid nanofluid). The outcomes of present investigations are in close agreement with the viscous fluid as a particular case.  相似文献   

19.
Natural convection heat transfer in Al2O3/water nanofluid is analyzed using the single-component nonhomogeneous lattice Boltzmann method (SCNHLBM). There exists a contradictory observation between the numerical and experimental works in the literature with respect to the heat transfer of nanofluids in natural convection. Nanofluid is treated as a single component with nonhomogeneous particle distribution introduced by a concentration transport equation of nanoparticles by considering the Brownian and thermophoretic diffusions. The average Nusselt number is found to deteriorate with increasing nanoparticle volume fraction; thus the trend of the experimental results is captured using SCNHLBM. Addition of Brownian and thermophoretic diffusion results in additional thermal diffusion and hence reduces the convective transport of heat. The contribution of Brownian and thermophoretic diffusions in heat transfer deterioration is revealed.  相似文献   

20.
Heat transfer characteristics of γ-Al2O3/water and TiO2/water nanofluids were measured in a shell and tube heat exchanger under turbulent flow condition. The effects of Peclet number, volume concentration of suspended nanoparticles, and particle type on the heat characteristics were investigated. Based on the results, adding of naoparticles to the base fluid causes the significant enhancement of heat transfer characteristics. For both nanofluids, two different optimum nanoparticle concentrations exist. Comparison of the heat transfer behavior of two nanofluids indicates that at a certain Peclet number, heat transfer characteristics of TiO2/water nanofluid at its optimum nanoparticle concentration are greater than those of γ-Al2O3/water nanofluid while γ-Al2O3/water nanofluid possesses better heat transfer behavior at higher nanoparticle concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号