首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种大模场带隙光纤,由排布在正方结构网 格中的高折射率介质柱形成导光机制。采用有 限元法分析了直光纤与弯曲光纤下的模式损耗与模场面积等特性。研究结果表明:这种光纤 具有较宽的带 隙,可同时支持基模和高阶模的传输,两种模式的泄漏损耗均低于1×10-3 dB/m。当光纤弯曲时,其包层会 产生具有强泄露损耗的包层模,并在一定的弯曲半径下与纤芯的高阶模发生强耦合。当弯曲 半径在15~20cm 之间时,基模弯曲损耗小于0.01dB/m,而高阶模损耗大于1dB/m, 因而光纤可以经弯曲实现大模场单模传 输。在1064nm波长处,其直光纤的基模模场面 积为1319.62μm2, 而在弯曲状态下的模场仍可达到975.00μm2以上,因而可实现大 模场的低弯曲损耗传输。  相似文献   

2.
低弯曲损耗大模场面积多芯光纤的研究   总被引:1,自引:0,他引:1  
针对19芯、37芯大模场光纤提出两种降低弯曲损耗的方法,一种方法是在芯区外引入一层空气孔,另外一种方法是在芯区外引入多包层低折射率结构。理论分析表明,多芯光纤弯曲损耗存在临界弯曲半径,在大于临界半径的情况下,弯曲损耗基本不变,在小于临界半径的情况下,弯曲损耗急剧增大。引入空气孔后,当19、37芯光纤模场面积分别为516μm2和920μm2时,临界弯曲半径都从3.5 cm减小到4 mm。当引入包层数达三层以上时,多包层结构也可使19、37芯光纤的临界弯曲半径从3.5cm减小到4 mm。  相似文献   

3.
为实现多芯光纤的严格双模传输和大模场面积, 将多芯光纤引入空气孔并排列成八 边形结构,利用COMSOL软件建立该光纤的电磁场模型,再采用有限元方法系统地分析相 对孔径大小、纤芯与包层折射率差和纤芯之间的间距等3个结构参数对光纤模式特性及有 效模场面积的影响,最后讨论了不同弯曲半径下光纤的弯曲损耗。根据分析结果并结合归一 化频率常数找到合适的结构参数,此时光纤的基模模场面积在平直状态下可达到1730 μm2, 当弯曲半径大于0.45 m时,弯曲损耗小于10-3 dB/m,基模模场面积仍可达到1685 μm2。该 光纤保持少模传输并实现了大模场面积和低弯曲损耗,在大容量、高功率光纤传输系统中具 有广阔的应用前景。  相似文献   

4.
设计了一种抗弯曲大模场面积单模光纤方案——沟槽辅助型瓣状光纤。纤芯中间加入了低折射率辅助沟槽,纤芯四周围绕高折射率扇形瓣。利用COMSOL软件计算模式损耗、模场面积等性能。研究表明:在弯曲半径为15cm的情况下,光纤模场面积可达700μm2,高阶模和基模损耗比大于100,能够实现有效单模操作。此外,当弯曲方向在[-180°,180°]范围内变化时,光纤性能保持稳定。这种光纤在紧凑型高功率光纤激光器和放大器领域显示出巨大的潜力。  相似文献   

5.
杨松  佘雨来  杜浩  张文涛  容建峰 《红外与激光工程》2023,52(3):20220551-1-20220551-10
提出了一种具有对称结构的大模场面积和低弯曲损耗的新型结构光纤,运用全矢量有限元法结合完美匹配层边界条件分析了光纤特性。该光纤由纤芯中的梯形折射率环和包层中的多层下陷层组成,仿真结果显示该光纤具有低弯曲损耗大模场单模传输的特性。对比分析了梯形谐振环、矩形谐振环、三角形谐振环结构光纤的弯曲损耗以及电场模式分布,实验结果显示梯形折射率环更具优越性。多层下陷层结构将模场限制在纤芯中,下陷层的数量大于2时模场面积基本上保持不变。研究结果表明,在波长为1 550 nm、弯曲半径为20 cm时,基模(FM)弯曲损耗只有0.056 868 dB/m,而高阶模(HOMs)损耗为3.58 dB/m,有效模场面积可达2 313.67μm2。该光纤对弯曲方向不敏感,在高功率光纤激光器放大器等光通信器件领域具有广阔的发展前景。  相似文献   

6.
提出了一种具有双模大模场面积的多芯光纤,建立了该多芯光纤的电磁场模型并采用有限元方法对其进行求解。基于该模型研究了光纤的模式特性和弯曲特性,系统分析了纤芯间距、纤芯半径和芯包折射率差对光纤模式特性和基模有效模场面积的影响。结果表明:通过引入空气孔并适当减少纤芯间距、纤芯半径和芯包折射率差,该光纤能实现严格的双模传输。保持双模传输时,通过增大纤芯间距,减小纤芯半径和芯包折射率差均有助于增大基模的模场面积。通过调整结构参数,在近似满足双模传输的条件下,光纤的基模模场面积在平直状态下可达到3155μm2。  相似文献   

7.
传统的大模场光纤是通过设计光纤结构来获得大模场面积的,可以实现的模场面积只能达到几百平方微米。增益导引和折射率导引相结合是实现大模场单模光纤的一种新方法。通过分析增益因子对折射率以及归一化频率的影响,得到了光纤中各阶模式截止条件与纤芯包层折射率差和增益因子的关系。最后以包层折射率为1.5734,纤芯折射率为1.5689,纤芯半径为50μm,10%(原子数分数)重掺杂钕离子的磷酸盐光纤作为模拟计算对象,当波长为1.064μm时,得到其模场直径大于90μm。对于普通光纤,增益导引和负折射率导引相结合的方法对实现大模场单模传输很有前景。  相似文献   

8.
400Gbit/s光通信用超低损耗超大有效面积光纤的研究   总被引:2,自引:2,他引:0  
陈伟  袁健  贺作为  宋君  孙雄章 《光电子.激光》2015,26(11):2104-2108
从电磁场基 本理论出发,采用标量波动方程进行分析与计算,设计出一种超低损耗超大有效面积单模光 纤(SMF)的折 射率剖面结构,纤芯折射率为1.461,纤芯直 径为13.99μm,内包层引入低折射率下凹 环,其折射率为1.455,宽为 6.95μm;采用连续化学气相 沉积(CCVD)工艺,制造出包层直径为125μm的SMF。测试表明,研 发的光纤具备超低损耗 与超大有效面积特性,其在1550nm波长的衰减 为 0.165dB/km,在1625nm波长的衰减为0.179dB/km;在 1550nm波长的模场直径为13.96μm,有效面 积为153μm2;光纤具备优良的抗弯曲性能,在弯曲半径为30mm 的芯轴上弯曲100圈的条件下, 其在1550nm的弯曲附加损耗为0.032dB,在1625nm波长的弯曲附加损耗为0.093dB。实验结果表明, 本文研发的SMF能够满 足400Gbit/s高速光通信的应用需求,可为下一代高速光纤通信提供 关键基础材料支撑。  相似文献   

9.
王凤蕊  李明中  林宏奂  王建军 《激光技术》2007,31(6):607-609,612
为了使大芯径多模双包层光纤激光器实现基模输出以抑制高功率双层光纤激光器中的非线性效应,采用将大芯径的多模双包层光纤适当弯曲进行选模使双包层光纤激光器获得单模激光输出的方法,进行了理论分析和实验验证,取得了大芯径多模双包层光纤内包层折射率、纤芯半径、光纤内传输信号光波长、光纤弯曲半径等因素对弯曲损耗及激光器输出光场模式影响的数据,并采用国产掺镱多模双包层光纤进行了弯曲选模实验,实现了多模光纤激光器的单模输出.结果表明,激光器最大输出功率达9W,斜率效率达17.3%,输出为基模.这一结果对大芯径多模双包层光纤激光器的选模是有帮助的.  相似文献   

10.
多模与单模光纤级联系统对激光束的传输   总被引:1,自引:1,他引:1  
肖志刚  李斌成 《中国激光》2008,35(6):855-860
分析了激光束在光纤中的非线性传输损耗,理论上证明了受激布里渊散射(SBS)是光纤传输能力的主要限制因素;实验上在532nm波段对长度为5m,纤芯半径为1.75μm,数值孔径(NA)为0.11的单模光纤的传输能力进行了测定,结果与理论一致。采用模场耦合理论,推导出多模光纤与单模光纤的直接耦合效率表达式,计算得到耦合效率与所选用的多模光纤和单模光纤的纤芯芯径之间的模拟关系。激光器输出波长为532nm;多模光纤的数值孔径为0.11,纤芯半径为12.5μm;单模光纤的数值孔径为0.11,纤芯半径为1.75μm,实验结果与理论基本吻合。根据理论和实验结果,设计出多模光纤与单模光纤混合传输方案,在柔性传输较高激光功率的同时可以得到高光束质量。  相似文献   

11.
微纳纤芯/包层结构大模场单模聚合物光纤设计   总被引:2,自引:2,他引:0  
提出了一种微纳纤芯/包层结构大模场单模聚合物 光纤。建立了光纤结构模型,在非 弱导近似条件下,根据波导理论,分析了微纳光纤的单模和波导特性;讨论了微纳纤芯直径 、 芯/包层折射率差以及包层直径等结构参数对微纳纤芯/包层结构聚合物光纤的模场分布、有 效 模场直径等导波特性的影响。结果表明,在传输波长λ=650nm、微纳纤芯直径Dcore=172μm、包层 直径Dclad=250μm和芯/ 包层折射率差δn=0.128时,可获得有效模场直径达126.56μm和芯内能流比为10.66% 的大模场单模聚合物光纤。  相似文献   

12.
弯曲的多模掺Yb3 + 双包层光纤激光器基模输出研究   总被引:1,自引:0,他引:1  
将一段纤芯直径为28.6μm,数值孔径为0.10的掺Yb^3+双包层光纤弯曲后可以得到基模激光输出,其输出最大功率为0.35W,中心波长为1073nm。实验结果和理论分析结果基本一致。  相似文献   

13.
新型大模场光子晶体光纤传输系统及其传输特性分析   总被引:1,自引:0,他引:1  
张银  陈明阳  张永康 《中国激光》2012,39(12):1205001-108
通过在多模光子晶体光纤的两端分别连接一根单模光子晶体光纤,对其选择合适的参数,形成一种可以实现低弯曲损耗、大模场单模传输的光纤传输系统。运用数值仿真,分析了该传输系统在模场面积、弯曲损耗、连接损耗等方面的特性。研究结果表明,多模光子晶体光纤与单模光子晶体光纤所组成的系统可实现有效的单模传输;工作波长为1064nm时,多模光子晶体光纤在直波导状态时的基模模场面积可达1593μm2;在弯曲半径低至10cm时,多模光子晶体光纤仍然可以保持低损耗传输。经过对多模光子晶体光纤结构参数的优化,其与单模光子晶体光纤的连接损耗降低至0.085dB。  相似文献   

14.
提出了一种新型掺锗芯低弯曲损耗光子晶体光纤。通过调整结构参数,实现了单模低弯曲损耗传输,与标准单模光纤有较好的适配性。仿真结果表明,波长1550nm处,弯曲半径为5mm时,基模损耗为0.014dB/km;弯曲半径为4mm时,基模损耗为0.42dB/km,能承受的弯曲半径小。显示了光子晶体光纤具有成为光纤到户"最后一公里"主要通信介质的性能优势。  相似文献   

15.
提出一种采用少模阶跃光纤与单模光纤连接的方法,实现低弯曲损耗传输的新型光纤通信系统。采用有限元法研究了在模场直径相同的情况下少模光纤纤芯半径与折射率差的关系,以及不同参数下光纤的弯曲损耗;采用光束传播法计算了少模光纤的各种模式与普通单模光纤的基模的连接损耗。证明了采用少模光纤可以利用模式间的正交性实现有效的单模传输,并具有低的弯曲损耗和连接损耗。  相似文献   

16.
为了消除光纤的弯曲损耗,甚至是恶劣弯曲条件下的弯曲损耗,日本Keio大学的科研人员对渐变折射率塑料光纤(GI—POF)的波导结构,如折射率分布、数值孔径(NA)和芯径进行了适当设计。当芯径小于200μm、NA大于0.25时,GI—POF在恶劣弯曲条件下的弯曲损耗明显减小。当芯径为200μm、NA为0.24时,即使在恶劣弯曲条件下GI—POF的弯曲损耗也消失了。首次试验证实。由弯曲引起的模式耦合导致了弯曲损耗。光纤弯曲前的模式耦合强度对弯曲损耗有很大的影响。通过相邻模之间的传播常数差△β评定了模式耦合强度。随芯径和NA而变的△β影响弯曲损耗。因此,根据邸的计算结果,日本Keio大学的科研人员提出适当设计GI—POF的波导参数的指导性意见,以便抑制弯曲损耗。  相似文献   

17.
数值分析了亚波长悬浮芯光纤在气体传感方面的应用。利用有限元法研究了相对灵敏度、有效模场面积、限制损耗与光纤参数包括纤芯直径和光纤材料折射率之间的关系。结果显示,相对灵敏度和限制损耗随着纤芯直径和光纤材料折射率的降低而增加。随着纤芯直径的减小,有效模场面积出现了先减小后增加的现象。增加包层孔直径能有效降低限制损耗,而相对灵敏度和有效模场面积保持不变。这些结果证明,亚波长悬浮芯光纤非常适合成为高灵敏度、大有效模场面积、低限制损耗的气体传感器。  相似文献   

18.
将传统阶跃型光纤与光子晶体光纤结构相结合,提出并研究了复合型7芯光子晶体光纤。该光纤可在有效降低芯间串扰的同时增大光纤的纤芯密度,为实现大容量、长距离的光纤空分复用技术提供了新思路。通过理论分析了掺锗纤芯以及纤芯周围空气孔的参数,结果表明,在1550 nm波长处中间纤芯与外围6个纤芯间的串扰低于-60 dB/km,有效模场面积大于90μm~2,芯间距最小为31.7μm。以31芯光纤为例,其相对纤芯复用因子可达到8.78,可用于低串扰、大容量、长距离传输的网络系统,对用于空分复用的多芯光纤设计具有指导意义。  相似文献   

19.
佘雨来  周德俭  陈小勇 《红外与激光工程》2019,48(9):918006-0918006(7)
建立了弯曲光纤的二维轴对称有限元分析模型,对初始光纤弯曲性能进行了有限元分析,分别计算其弯曲损耗,有效模场面积和连接损耗;选取芯层到下陷层距离b,下陷层宽度c,下陷层深度t,空气孔孔径r为设计变量,以弯曲损耗和连接损耗最小为目标,利用正交试验和灰度关联分析相结合的方法对光纤弯曲性能进行了多因素多目标优化设计。研究结果表明:优化后光纤弯曲损耗从0.127 8 dB/m减小到1.749 810-4 dB/m;有效模场面积从94.741 m2减小到82.37 m2;连接损耗由0.174 3 dB减小到5.80510-4 dB。与标准单模光纤对比发现,新型光纤在弯曲半径为3 mm的情况下,有效模场面积从209.21 m2减小到82.3 m2,连接损耗从7.535 8 dB减小到5.80510-4 dB,大大地降低了光纤的连接损耗。新型光纤在小半径弯曲情况下,也能保证系统的传输质量。  相似文献   

20.
为了提高光纤放大器单纤输出功率,设计了一种新型折射率掺镱双包层光纤,纤芯直径30μm,包层直径125μm。采用一种改良的高温气相掺杂技术和改进的化学气相沉积法制作,纤芯折射率分布为凹陷型结构,掺杂区为低折射率区。对光纤的荧光特性、模场特性以及放大特性进行了测试。试验结果表明,该新型折射率分布设计有利于纤芯对抽运光吸收,荧光输出平坦,对光纤进行弯曲处理可实现平坦模场的能量输出,5m光纤实现了40dB 高功率飞秒信号光放大,输出功率30kW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号