首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of formation and dissociation of the horse metmyoglobin/fluoride complex has been investigated between pH 3.4 and 11. The ionic strength dependence of the reaction has been measured at integral pH values between pH 5 and 10. Hydrofluoric acid, HF, binds to metmyoglobin with a rate constant of (4.7 +/- 0. 7) x 10(4) M-1 s-1. An apparent ionization in metmyoglobin with a pKa of 4.4 +/- 0.5 influences the rate of HF binding and is attributed to the distal histidine, His-64. Protonation of His-64 increases the HF binding rate by a factor of 2.6. The fluoride anion, F-, binds to metmyoglobin with a rate constant of (5.6 +/- 1.4) x 10(-2) M-1 s-1, about 10(6) times slower than HF. Binding of either HF or F- to hydroxymetmyoglobin cannot be detected. Protonation of the distal histidine facilitates HF dissociation from the metmyoglobin/fluoride complex. HF dissociates with a rate constant of 1.9 +/- 0.3 s-1. The fluoride anion dissociates 2000 times more slowly, with a rate constant of (8.7 +/- 1.6) x 10(-4) s-1. The apparent pKa for His-64 ionization in the fluorometmyoglobin complex is 5.7 +/- 0.1. The association and dissociation rate constants are relatively independent of ionic strength with secondary kinetic salt effects sufficient to account for the ionic strength variation of both, consistent with the idea that association and dissociation of neutral HF dominate the kinetics of fluoride binding to metmyoglobin.  相似文献   

2.
A generalized, weighted, nonlinear least squares procedure is developed, based on pH titration data, for the refinement of octanol-water partition coefficients (log P) and ionization constants (pKa) of multiprotic substances. Ion-pair partition reactions, self-association reactions forming oligomers, and formations of mixed-substance complexes can be treated with this procedure. The procedure allows for CO2 corrections in instances where the base titrant may have CO2 as an impurity. Optionally, the substance purity and the titrant strength may be treated as adjustable parameters. The partial differentiation in the Gauss-Newton refinement procedure is based on newly derived analytical expressions. The new procedure was experimentally demonstrated with benzoic acid, 1-benzylimidazole, (+/-)-propranolol, and mellitic acid (benzenehexacarboxylic acid, AH6). Ionic strength (l) was adjusted with KNO3. Benzoic acid (20 degrees C; l 0.1 M): pKa = 3.99 +/- 0.02, log P = 1.96 +/- 0.02, log P (anion) = -1.2; 1-benzylimidazole (25 degrees C; l 0.1 M): pKa = 6.70 +/- 0.03, log P = 1.60 +/- 0.04; propranolol (25 degrees C; l 0.1 M): pKa = 9.53 +/- 0.06, log P = 3.35 +/- 0.03, log P (cation) = 0.62 +/- 0.08; mellitic acid (26 degrees C; l 0.2 M): pKas 1.10 +/- 0.46, 1.69 +/- 0.03, 2.75 +/- 0.02, 4.00 +/- 0.02, 5.05 +/- 0.01, and 6.04 +/- 0.02; in the presence of 0.01 M n-Bu4NBr, log P (AH6) = 1.5, log P (AH5-) = 1.1, log P (AH4(2-)) = 0.8, log P (AH3(3-)) = 0.3, log P (AH2(4-)) = -0.1, and log P (AH5-) = -0.5 (all +/- 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Enantiomers of 4-nitrophenyl 4-X-phenacyl methylphosphonate esters (X = H, PMN; CH3; and CH3O) inactivate human alpha-thrombin with rate constants 4-235 M-1 s-1 in pH 6.5, 0.025 M citrate buffer, and 0.15 M NaCl at 7.0 +/- 0.1 degrees C. Stereoselectivity of the inactivation of thrombin is 2-39 and favors the levorotatory enantiomers. The pH-dependence of inactivation of thrombin by (-)-PMN is sigmoidal and consistent with the participation of a catalytic residue with a pKa of 8.0 +/- 0.1 in 0.15 M NaCl and a pKa of 7.4 +/- 0.2 in 0.15 M choline chloride in the nucleophilic attack of the catalytic Ser at phosphorus. The solvent isotope effect on ki/Ki in the pH-independent region of the reaction is 2.26 +/- 0.17. Thrombin activity returns from the adducts on the 2-7 h time scale at 25.0 +/- 0.1 degrees C via a self-catalyzed intramolecular reaction. The pH dependence of reactivation is significant from the adduct formed with (-)-CH3O-PMN and (-)-CH3-PMN and less so from the adducts formed with the other enantiomers of the inhibitors. Kinetic pKs approximately 7.2, with the exception of the adducts with (-)-PMN and (-)-CH3O-PMN, indicate that a pH-dependent conformational change affects the rate of dephosphonylation. A structural interpretation of the stereoselectivity and other mechanistic features is provided based on the energy-optimized structures of the adducts. Pharmaco-medical use of human alpha-thrombin covalently modified by the PMNs is suggested.  相似文献   

4.
We have studied the aerobic oxidation of linoleyl alcohol (LAL) by potato tuber lipoxygenase in the presence of 0.02% (w/v) non-ionic detergent Lubrol PX (and its analog C12E10) and 0.1 mM sodium dodecyl sulfate to investigate the role of carboxylic group in substrate binding. While the enzyme displayed a comparable affinity toward LA and LAL, the rate of LAL oxidation was approximately one-fourth of that of linoleic acid. The pH-profile of the reaction suggests that the rate of LAL oxidation is controlled by two ionizable groups with pKa values of 5.3 and 7.5, with optimal pH being 6.4+/-0.1. Since LAL is not ionizable at this pH, we conclude that the rate of the reaction is controlled by two ionogenic groups of the enzyme. The primary dioxygenation product(s) of LAL had a maximal absorbance at 233+/-1 nm. The products have been isolated, catalytically hydrogenated with H2 over Pd on carbon, and analyzed by GC-MS. Two major equimolar products were found to be 9- and 13-hydroxystearyl alcohols, indicating that 9- and 13-hydroperoxylinoleyl alcohols are the primary dioxygenation products. Based on these results we propose that the carboxyl group of polyunsaturated fatty acid may not be involved in substrate binding of potato tuber lipoxygenase.  相似文献   

5.
The 20 kDa xylanase from Bacillus circulans carries out hydrolysis of xylan via a two-step mechanism involving a covalent glycosyl-enzyme intermediate. In this double-displacement reaction, Glu78 functions as a nucleophile to form the intermediate, while Glu172 acts as a general acid catalyst during glycosylation, protonating the departing aglycone, and then as a general base during deglycosylation, deprotonating the attacking water. The dual role of Glu172 places specific demands upon its ionization states and hence pKa values. 13C-NMR titrations of xylanase, labeled with [delta-13C]glutamic acid, have revealed pKa values of 4.6 and 6.7 for Glu78 and Glu172, respectively. These agree well with the apparent pKa values obtained from a study of the pH dependence of kcat/Km and demonstrate that, at the enzyme's pH optimum of 5.7, the nucleophile Glu78 is deprotonated and the general acid Glu172 initially protonated. Remarkably, the pKa for Glu172 drops to 4.2 in a trapped covalent glycosyl-enzyme intermediate, formed by reaction with 2', 4'-dinitrophenyl 2-deoxy-2-fluoro-beta-xylobioside [Miao et al. (1994) Biochemistry 33, 7027-7032]. A similar pKa is measured for Glu172 when a glutamine is present at position 78. This large decrease in pKa of approximately 2.5 units is consistent with the role of Glu172 as a general base catalyst in the deglycosylation step and appears to be a consequence of both reduced electrostatic repulsion due to neutralization of Glu78 and a conformational change in the protein. Such "pKa cycling" during catalysis is likely to be a common phenomenon in glycosidases.  相似文献   

6.
The flavoenzyme glutathione reductase catalyzes the NADPH-dependent reduction of glutathione disulfide, yielding two molecules of glutathione. The oxidation-reduction potentials, Eox/EH2 (two-electron reduced enzyme), for yeast, Escherichia coli, and human glutathione reductase have been determined between pH 6.0 and 9.8 relative to the nonphysiological substrate couple NAD+/NADH and were found to be -237, -243, and -227 mV (+/-5 mV) at pH 7.0 and 20 degreesC, respectively. The potential as a function of pH demonstrated slopes of -51, -45, and -42 mV/pH unit, respectively, at low pH and -37, -31, and -34 mV/pH unit, respectively, at high pH. The change in slope indicated pKa values of 7.4, 8.5, and 7.6, respectively. The slopes indicate that two protons are associated with the two-electron reduction of Eox at low pH and that only one proton is involved with the two-electron reduction of Eox at high pH, provided that the effects of nearby titratable residues are considered in the data analysis. The influence of four such groups, Cys50, Cys45, His456', and either Tyr107 or the flavin-(N3), has been included (residue numbering refers to the yeast sequence). The enzyme loses activity upon deprotonation of the acid-base catalyst at high pH. Since the pKa ascribed to the EH2-to-EH- ionization is lower than the pKa of the acid-base catalyst, both the EH2 and EH- forms of glutathione reductase must be catalytically active, in contrast to the closely related enzyme lipoamide dehydrogenase, for which only EH2 is active.  相似文献   

7.
The interaction of inositol hexakisphosphate (IHP) with oxygenated human adult hemoglobin (Hb) was investigated at 25 degreesC. The affinity of IHP for oxygenated Hb is strongly pH-dependent, and potentiometric measurements of proton uptake and release upon IHP addition have shown that over the range between pH 8.0 and pH 6.0 in oxygenated Hb there are three groups of residues that change their pKa values after IHP addition, likely because of their interaction with negative charges of the heterotropic effector. On the basis of previous calculations on the electrostatic properties of human Hb (Matthew, J. B., Hanania, G. I. H., and Gurd, F. R. N. (1979) Biochemistry 18, 1919-1928; Lee, A. W.-m., Karplus, M., Poyart, C., and Bursaux, E. (1988) Biochemistry 27, 1285-1301), two of these groups might be Val1beta and His143beta, which are located in the beta1beta2 dyad axis, where they have been also proposed to interact with 2,3-diphosphoglycerate, whereas the third group does not appear easily identifiable. Calorimetric measurements of the heat associated with IHP binding at different pH values over the same range indicate that IHP binding is mostly enthalpy-driven at pH < 7 and mostly entropy-driven at pH > 7.  相似文献   

8.
The pH dependence of the steady-state kinetic parameters for the dialkylglycine decarboxylase-catalyzed decarboxylation-dependent transamination between 2-aminoisobutyrate (AIB) and pyruvate is presented. The pH dependence of methylation and DTNB modification reactions, and spectroscopic properties, is used to augment the assignment of the kinetic pKa's to specific ionizations. The coincidence of pKa values (approximately 7.4) observed in kcat/KAIB, 1/KAIB, Kis for pyruvate, KPLP, and in absorbance and fluorescence titrations demonstrates that AIB is not a sticky substrate. It furthermore suggests that the decarboxylation step, or a conformational isomerization preceding it, limits the rate of the overall catalytic cycle. Coexisting, kinetically distinguishable conformers of DGD-PLP, originating from an alkali metal ion binding site, were previously demonstrated at pH 8.2 for DGD-PLP (Zhou, X., Toney, M. D. Biochemistry 37, 5761-5769). The pKa value of approximately 8.8 observed in kcat, kcat/KAIB, Kd for K+, spectrometric titrations, and the reaction of DGD-PLP with DTNB is tentatively assigned to the conformational change interconverting the two enzyme forms previously characterized. Three pKa's are observed in pH titrations of the DGD-PLP coenzyme absorbance. Individual spectra for the four ionization states are deconvoluted by fitting log-normal curves. All four ionization states have both ketoenamine and enolimine tautomers present. This and a review of spectral data in the literature lead to the conclusion that the pKa of approximately 7.4, which gives the largest spectral changes and controls kcat/KAIB, is not deprotonation of the aldimine nitrogen. Rather, it must be an active site residue whose ionization alters the ratio between ketoenamine and enolimine tautomers.  相似文献   

9.
The mechanism by which acyl-CoA dehydrogenases initiate catalysis was studied by using p-substituted phenylacetyl-CoAs (substituents-NO2, -CN, and CH3CO-), 3S-C8-, and 3'-dephospho-3S-C8CoA. These analogues lack a beta C-H and cannot undergo alpha,beta-dehydrogenation. Instead they deprotonate at alpha C-H at pH > or = 14 to form delocalized carbanions having strong absorbancies in the near UV-visible spectrum. The pKas of the corresponding phenylacetone analogues were determined as approximately 13.6 (-NO2), approximately 14.5 (-CN), and approximately 14.6 (CH3CO-). Upon binding to human wild-type medium-chain acyl-CoA dehydrogenase (MCADH), all analogues undergo alpha C-H deprotonation. While the extent of deprotonation varies, the anionic products from charge-transfer complexes with the oxidized flavin. From the pH dependence of the dissociation constants (Kd) of p-NO2-phenylacetyl-CoA (4NPA-CoA), 3S-C8-CoA, and 3'-dephospho-3S-C8CoA, four pKas at approximately 5, approximately 6, approximately 7.3, and approximately 8 were identified. They were assigned to the following ionizations: (a) pKa approximately 5, ligand (L-H) in the MCADH approximately ligand complex; (b) pKa approximately 6, Glu376-COOH in uncomplexed MCADH; (c) pKa approximately 7.3, Glu99-COOH in uncomplexed MCADH (Glu99 is a residue that flanks the bottom of the active-center cavity; this pK is absent in the mutant Glu99Gly-MCADH); and (d) pK approximately 8, Glu99-COOH in the MCADH approximately 4NPA-CoA complex. The pKa approximately 6 (b) is not significantly affected in the MCADH approximately 4NPA-CoA complex, but it is increased by > or = 1 pK unit in that with 3S-C8CoA and further in the presence of C8-CoA, the best substrate. The alpha C-H pKas of 4NPA-CoA, of 3S-C8-CoA, and of 3'-dephospho-3S-C8CoA in the complex with MCADH are approximately 5, approximately 5, and approximately 6. Compared to those of the free species these pKa values are therefore lowered by 8 to > or = 11 pH units (50 to > or = 65 kJ mol-1) and are close to the pKa of Glu376-COOH in the complex with substrate/ligand. This effect is ascribed mainly to the hydrogen-bond interactions of the thioester carbonyl group with the ribityl-2'-OH of FAD and Glu376-NH. It is concluded that the pKa shifts induced with normal substrates such as n-octanoyl-CoA are still higher and of the order of 9-13 pK units. With 4NPA-CoA and MCADH, alpha C-H abstraction is fast (kapp approximately 55 s-1 at pH 7.5 and 25 degrees C, deuterium isotope effect approximately 1.34). However, it does not proceed to completion since it constitutes an approach to equilibrium with a finite rate for reprotonation in the pH range 6-9.5. The extent of deprotonation and the respective rates are pH-dependent and reflect apparent pKas of approximately 5 and approximately 7.3, which correspond to those determined in static experiments.  相似文献   

10.
An experimental study on the concentration dependence of oxygenation curves for human hemoglobin has been carried out between 4 X 10(-8) M heme and 5 X 10(-4) M heme in 0.1 M tris(hydroxymehtyl)aminomethane hydrochloride, 0.1 M NaCl, 1 mM disodium ethylenediaminetetraacetic acid, pH 7.4, 21.5 degrees C. With decreasing hemoglobin concentration the curves show pronounced shifts in position and shape, consistent with dissociation of tetrameric hemoglobin into dimeric species of high affinity and low cooperativity. Combination of these data with independently determined values of dissociation constants for unliganded and fully liganded hemoglobin permits a resolution of the seven parameters necessary to define the linked binding and subunit association processes. The total oxygenation-linked subunit dissociation energy (6.34 kcal) was resolved into intersubunit contact energy changes between alphabeta dimers in tetrameric hemoglobin which accompany binding of the first, middle two, and last oxygen molecules. The resolution is accurate to within approximately +/-0.3 kcal. To within this limit the isolated dimers are found to bind oxygen noncooperatively and with the same affinity as isolated alpha and beta chains. Equally good fits to the data are obtained when dimers are slightly anticooperative. At least three major energetic states are apparently assumed by hemoglobin tetramers, with respect to the alpha1beta2 contact region, corresponding to (a) unliganded, (b) singly liganded, (c) triply and quadruply liganded species. The results do not establish whether these states may be assumed by a single molecule, or whether they arise as averages over a distrubution of conformational states. They do provide unequivocal evidence against a concerted transition at any particular binding step in a system with only two energetic states of tetramer (i.e., an all or none switchover between T and R states at a particular binding step).  相似文献   

11.
The cysteine residues of hen ovalbumin were S-carboxymethylated with non-radioactive iodoacetic acid under various conditions by altering the pH at which the protein was denatured in 8 M urea, by using different molar ratios of non-radioactive iodoacetic acid to cysteine and by varying the time at which carboxymethylation was commenced after denaturing conditions had been applied. Under the various conditions, the thiol groups were carboxymethylated to different extents, the residual thiol groups being measured by reaction with 5,5'-dithiobis(2-nitrobenzoic acid) in the presence of sodium dodecyl sulfate. When ovalbumin is carboxymethylated in alkaline urea, it unfolds slowly and the carboxymethylation is incomplete even with 150-fold excess iodoacetic acid. The known rapid thiol-disulfide exchange that occurs at alkaline pH values makes this method of carboxymethylation unsuitable as a preliminary step for blocking the native cysteine residues of ovalbumin before reduction and labelling the thiol groups formed by reduction of the disulfide bonds. Titration of the thiol groups of ovalbumin in 6 M guanidine hydrochloride or 1% (w/v) sodium dodecyl sulfate at pH 8.2 with 5,5'-dithiobis(2-nitrobenzoic acid) is more rapid than in 8 M urea and these solvents would be preferable for studies of the disulfide-bonded sequences. Denaturation of ovalbumin in acidic 8 M urea is a very rapid process, and under mild acid conditions thiol-disulfide interchange is much slower. Subsequent carboxymethylation of the cysteine residues at alkaline pH with 150-fold excess iodoacetic acid results in complete carboxymethylation and the carboxymethylated ovalbumin can be reduced and labelled with radioactive iodoacetic acid with specific labelling of the half-cystine residues involved in the disulfide bond. The results are discussed in relation to the allocation of half-cystine residues in other protein systems that contain both thiol and disulfide groups.  相似文献   

12.
Bacterial alkaline phosphatase is an active catalyst for the hydrolysis of N-phosphorylated pyridines, with values of the second-order rate constant kcat/Km in the range 0.4-1.2 x 10(6) M-1 s-1 at pH 8.0, 25 degrees C. There is little or no dependence of the rate on the pKa of the leaving group; the value of beta 1g is 0 +/- 0.05, which may be compared with beta 1g = -1.0 for the nonenzymic reaction. Phosphorylated pyridines do not have a free electron pair available for protonation or coordination of the leaving group. Therefore, this result means that the similar, small dependence on leaving group structure for the enzyme-catalyzed hydrolysis of phosphate esters [Hall, A. D., & Williams, A. (1986) Biochemistry 25, 4784-4790) does not provide evidence for general acid catalysis or electrophilic assistance of leaving group expulsion. The results are consistent with the hypothesis that productive binding of the substrate, which may involve a conformational change, is largely rate limiting for turnover of the enzyme at low substrate concentrations.  相似文献   

13.
Glutamic acid-190 in the beta subunit of F1-ATPase from thermophilic Bacillus PS-3 (TF1) was reported to be essential for the ATPase activity. The mutant TF1beta subunit in which Glu-190 had been substituted by cysteine was carboxymethylated with 13C-labeled monoiodoacetic acid. The pKa value of the carboxymethylene group at the 190 position was determined as 5.6 +/- 0.4 by 13C-NMR. On the basis of this value, the pKa of the carboxylate of Glu-190 of the TF1beta subunit was estimated to be 6.8 +/- 0.5. The unusually high pKa could play a role in the catalytic mechanism of F1-ATPase.  相似文献   

14.
Serine transhydroxymethylase, from lamb or rabbit liver, is known to catalyze slow transamination of D-alanine, but not of L-amino acids, in a tetrahydrofolate-independent reaction. Both enzymes will process the D-isomer of beta-fluoroalanine for alpha, beta-elimination of HF to yield an aminoacrylate-pyridoxal-P-enzyme intermediate. This intermediate partitions between harmless hydrolysis to pyruvate, NH4+, and active enzyme-pyridoxal-P (catalytic turnover) and suicidal enzyme alkylation by covalent modification with an average partition ratio of 40-60 turnovers/inactivation event/monomer unit of this tetrameric enzyme. Enzyme inactivation occurs with stoichiometric incorporation of radioactive label from D-[1,2-14C]fluoroalanine. Titration of enzymic cysteinyl --SH groups with 5,5'-dithiobis(2-nitrobenzoate) indicates loss of 1 --SH group on inactivation. Acid hydrolysis of radioactive-inactive enzyme confirms cysteine residue modification. Treatment of inactive enzyme with 6 M urea, then KBH4, followed by acid hydrolysis yields two radioactive compounds, lanthionine and S-carboxyhydroxyethylcysteine, in about equal amounts. The addition of tetrahydrofolate stimulates both pyruvate production and inactivation to equal extents with about a 200-fold rate acceleration at 0.5 mM tetrahydrofolate to turnover numbers of approximately 120 min-1. The Km for D-fluoroalanine is high, 10-60 mM, and this low substrate affinity suggests D-fluoroalanine will not be a useful in vivo agent for selective inactivation of liver cell serine transhydroxymethylases.  相似文献   

15.
Structural and biochemical studies suggest that serpins induce structural rearrangements in their target serine-proteinases. Previous NMR studies of the complex between a serpin, alpha1-proteinase inhibitor, and a mutant of recombinant rat trypsin (the Asp189 to Ser mutant, D189S, which is much more stable than wild-type rat trypsin against autoproteolysis) provided information about the state of catalytic residues in this complex: the hydrogen bond between Asp102 and His57 remains intact in the complex, and spectral properties of His57 are more like those of the zymogen than of the activated enzyme (G. Kaslik, et al., 1997, Biochemistry 36, 5455-5464). Here we report the protonation and exchange behavior of His57 of recombinant rat trypsin D189S in three states: the zymogen, the active enzyme, and the complex with human alpha1-proteinase inhibitor and compare these with analogous behavior of His57 of bovine chymotrypsinogen and alpha-chymotrypsin. In these studies the pKa of His57 has been determined from the pH dependence of the 1H NMR signal from the Hdelta1 proton of histidine in the Asp102-His57 dyad, and a measure of the accessibility of this part of the active site has been obtained from the rate of appearance of this signal following its selective saturation. The activation of rat trypsinogen D189S (zymogen, pKa = 7.8 +/- 0.1; Hill coefficient = 0. 86 +/- 0.05) decreased the pKa of His57 by 1.1 unit and made the protonation process cooperative (active enzyme, pKa = 6.7 +/- 0.1; Hill coefficient = 1.37 +/- 0.08). The binding of alpha1-proteinase inhibitor to trypsin D189S led to an increase in the pKa value of His57 to a value higher than that of the zymogen and led to negative cooperativity in the protonation process (complex, pKa = 8.1 +/- 0. 1; Hill coefficient = 0.70 +/- 0.08), as was observed for the zymogen. In spite of these differences in the pKa of His57 in the zymogen, active enzyme, and alpha1-proteinase inhibitor complex, the solvent exchange lifetime of the His57 Hdelta1 proton was the same, within experimental error, in all three states (lifetime = 2 to 12.5 ms). The linewidth of the 1H NMR signal from the Hdelta1 proton of His57 was relatively sharp, at temperatures between 5 and 20 degrees C at both low pH (5.2) and high pH (10.0), in spectra of bovine alpha-chymotrypsin, recombinant rat trypsin D189S, and the complex between rat trypsin D189S and human alpha1-proteinase inhibitor; however, in spectra of the complex between alpha-chymotrypsin and human alpha1-proteinase inhibitor, the peak was broader and could be well-resolved only at the lower temperature (5 degrees C).  相似文献   

16.
The gene encoding the human erythrocyte form of cytochrome b5 (97 residues in length) has been prepared by mutagenesis of an expression vector encoding lipase-solubilized bovine liver microsomal cytochrome b5 (93 residues in length) (Funk et al., 1990). Efficient expression of this gene in Escherichia coli has provided the first opportunity to obtain this protein in quantities sufficient for physical and functional characterization. Comparison of the erythrocytic cytochrome with the trypsin-solubilized bovine liver cytochrome b5 by potentiometric titration indicates that the principal electrostatic difference between the two proteins results from two additional His residues present in the human erythrocytic protein. The midpoint reduction potential of this protein determined by direct electrochemistry is -9 +/- 2 mV vs SHE at pH 7.0 (mu = 0.10 M, 25.0 degrees C), and this value varies with pH in a fashion that is consistent with the presence of a single ionizable group that changes pKa from 6.0 +/- 0.1 in the ferricytochrome to 6.3 +/- 0.1 in the ferrocytochrome with delta H degrees = -3.2 +/- 0.1 kcal/mol and delta S degrees = -11.5 +/- 0.3 eu (pH 7.0, mu = 0.10). The 1D 1H NMR spectrum of the erythrocytic ferricytochrome indicates that 90% of the protein binds heme in the "major" orientation and 10% of the protein binds heme in the "minor" orientation (pH 7.0, 25 degrees C) with delta H degrees = -2.9 +/- 0.3 kcal/mol and delta S degrees = -5.4 +/- 0.9 eu for this equilibrium.  相似文献   

17.
The electrochemical study of some 2-mercapto-5-R-ammino-1,3,4-thiadiazole derivatives was made by cyclic and linear sweep voltammetry using a carbon paste electrode (CPE, graphite/solid paraffin ratio 2:1) as working electrode and an Ag/AgCl reference electrode. The current-potential curves were recorded in anodic polarisation in -0.1 and +1.3 V range using aqueous solutions and different buffers (between pH 1.2 and 10.0), with 20 or 50 mV s(-1) sweep rate. The oxidation peak appears between +0.65 and +0.70 V due to disulphides formation. The 5-phenyl derivative has two oxidation peaks, the first at +0.45 +/- 0.03 V and the second at +0.65 +/- 0.03 V. The oxidation potentials are pH dependent, decreasing from 0.9 +/- 0.1 V at pH 1.2 to 0.6 +/- 0.1 V at a pH between 8.0 and 10.0. In some potential ranges depending on pKa of molecules the oxidation potential and oxidation current are pH independent. Simple, precise and accurate voltammetric methods for the determination of these compounds were developed and validated in 2.5 x 10(-6)-7.5 x 10(-4) mol l(-1) concentration ranges. The detection limits were 2.3 micromol l(-1) for 5-ammino-, 12.3 micromol l(-1) for 5-acetylammino-, 11.6 micromol l(-1) for 5-allylammino-, and 1.2 micromol l(-1) for 5-phenylammino-2-mercapto-1,3,4 thiadiazole derivatives.  相似文献   

18.
Two-dimensional homo- and heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine pKa values for all of the acidic residues in the B1 and B2 immunoglobulin G- (IgG-) binding domains of protein G. Due to the stability of protein G over a wide pH range, estimates of ionization constants were also obtained for some basic residues. These experimentally determined ionization constants were compared with values calculated from both X-ray and NMR-derived structures of B1 and B2 using the UHBD algorithm [Antosiewicz, J., et al. (1994) J. Mol. Biol. 238, 415-436]. This algorithm has been found to be predictive for pKa measurements in proteins and, in combination with experimental measurements, allowed some evaluation of the NMR and X-ray structures. Three regions where significant differences exist between the X-ray and NMR structures are (1) the position of the E56 side chain relative to the backbone amides of K10 and D40, (2) residues 33-37 in the helix, and (3) the Y45 side-chain conformation. For all three cases, the experimental pH titration curves are notably more consistent with the X-ray structures than the NMR structures. In contrast, a number of solvent-accessible side chains have experimental pKas more in agreement with mean pKas calculated from families of NMR structures. The conformations of these side chains may be susceptible to crystal packing effects. From titration experiments under basic conditions, it is noteworthy that the chemical shift of the Y45 C epsilonH resonance is invariant up to pDcorr 12. The Y45 side-chain hydroxyl group appears to maintain a nativelike hydrogen bond with D47 at pDcorr 12, even though the protein is approximately 90% unfolded. These results suggest that this short-range (i, i + 2) interaction, located in the beta3-beta4 hairpin, is present in the high-pH denatured state and may therefore form early in the folding of protein G.  相似文献   

19.
Flash photolysis of alkaline peroxynitrite solutions results in the formation of nitrogen monoxide and superoxide. From the rate of recombination it is concluded that the rate constant of the reaction of nitrogen monoxide with superoxide is (1.9 +/- 0.2) x 10(10) M-1 s-1. The pKa of hydrogen oxoperoxonitrate is dependent on the medium. With the stopped-flow technique a value of 6.5 is found at millimolar phosphate concentrations, while at 0.5 M phosphate the value is 7.5. The kinetics of decay do not follow first-order kinetics when the pH is larger than the pKa, combined with a total peroxynitrite and peroxynitrous acid concentration that exceeds 0.1 mM. An adduct between ONOO- and ONOOH is formed with a stability constant of (1.0 +/- 0.1) x 10(4) M. The kinetics of the decay of hydrogen oxoperoxonitrate are not very pressure-dependent: from stopped-flow experiments up to 152 MPa, an activation volume of 1.7 +/- 1.0 cm3 mol-1 was calculated. This small value is not compatible with homolysis of the O-O bond to yield free nitrogen dioxide and the hydroxyl radical. Pulse radiolysis of alkaline peroxynitrite solutions indicates that the hydroxyl radical reacts with ONOO- to form [(HO)ONOO].- with a rate constant of 5.8 x 10(9) M-1 s-1. This radical absorbs with a maximum at 420 nm (epsilon = 1.8 x 10(3) M-1 cm-1) and decays by second-order kinetics, k = 3.4 x 10(6) M-1 s-1. Improvements to the biomimetic synthesis of peroxynitrite with solid potassium superoxide and gaseous nitrogen monoxide result in higher peroxynitrite to nitrite yields than in most other syntheses.  相似文献   

20.
Asymmetric Ni(II)-Fe(II) hybrid hemoglobin, XL[alpha(Fe)beta(Fe)][alpha(Ni)beta(Ni)], in which the alpha 1 beta 1 dimer containing ferrous protoporphyrin IX and the complementary alpha 2 beta 2 dimer containing Ni(II) protoporphyrin IX were cross-linked between Lys-82 beta 1 and Lys-82 beta 2 by reaction with bis(3,5-dibromosalicyl) fumarate, was synthesized and characterized. We have previously shown that (i) Ni(II) protoporphyrin IX, which binds neither oxygen nor carbon monoxide, mimics a fixed deoxyheme with respect to its effect on the oxygen equilibrium properties of the counterpart iron subunits in both symmetric Ni(II)-Fe(II) hybrid Hbs [Shibayama, N., Morimoto, H., & Miyazaki, G. (1986) J. Mol. Biol. 192, 323-329] and (ii) the cross-linking used in this study little affects the oxygen equilibrium properties of hemoglobin [Shibayama, N., Imai, K., Hirata, H., Hiraiwa, H., Morimoto, H., & Saigo, S. (1991) Biochemistry 30, 8158-8165]. These remarkable features of our model allowed us to measure the oxygen equilibrium curves for the first two steps of oxygen binding to the alpha 1 beta 1 dimer within the hemoglobin tetramer. At all pH values examined, the affinities of this asymmetric hybrid for the first oxygen molecule are as low as those of native hemoglobin. The hybrid did not show cooperative oxygen binding at pH 6.4, while significant cooperativity was observed with rising pH; i.e., the Hill coefficient was increased from 1.41 to 1.53 upon a pH change from 7.4 to 8.4. The electronic absorption spectrum of Ni(II) protoporphyrin IX in the alpha 2 subunit was changed upon carbon monoxide (or oxygen) binding to the alpha 1 beta 1 dimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号