首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to achieve higher recording densities up to 1 Terabit per square inch using conventional magnetic recording technologies, the recording slider will need to be physically spaced very close to the rotating disk, possibly via the use of an air-bearing surface. However, as the recording slider is flying at such ultra-low spacing of few nanometers over a high-speed rotating disk, it is experiencing disturbances from various different sources and of a wide frequency range. These disturbances may cause the recording slider to vibrate significantly, a condition known as flying-height modulation (FHM), which may result in data loss and possibly head–disk interface failure. A significant source of slider excitation is due to low frequency surface topographical features of the rotating disk, termed dynamic microwaviness. Dynamic microwaviness is a dynamic property of the disk and differs from regular topographical microwaviness, which is a static property. Most research works on dynamic microwaviness and FHM have been focused at the component level, using somewhat idealized conditions, such as high performance air-spindle motors that exhibit very low vibration amplitudes. In this paper, actual hard-disk drive spindle motors are used to investigate the effect of spindle motor vibration on dynamic microwaviness and FHM. It is found that there is a clear connection between spindle motor vibration and dynamic microwaviness that affects FHM.  相似文献   

2.
Flying stability has been becoming more critical for air bearing sliders with extremely low flying height (FH). Therefore, the effects of disk waviness on flying height modulation (FHM) cannot be neglected. This paper presents an analytical study on the mechanism of FHM of air bearing sliders due to disk waviness, and a design optimization for increasing waviness following ability of sliders. An analytical three-degree-of-freedom (3-DOF) model is developed, where the air bearings are modeled as six lumped linear springs and dampers. The purpose of this model is to develop a quantitative understanding of how air bearing sliders respond to disk waviness. The dynamic characteristics of the slider-air bearing system are then analyzed, and the closed-form frequency resonance function (FRF) of FHM to disk waviness is derived. The impact of disk surface features and the positions of the trailing pad, the side pads, the leading pads and the negative pressure center on FHM are also investigated using parametric analysis. The analysis results show that the improvement of the roll-off characteristics of the disk surface waviness can also decrease the FHM. In addition, shortening the distance between the trailing pad pressure center and the head position, moving backward the side pads and leading pads and forward the negative pressure center can increase waviness following ability of the slider. Finally, an air bearing slider is designed according to the proposed design strategies for reducing the FHM due to disk waviness.  相似文献   

3.
Khurshudov  Andrei  Waltman  R.J. 《Tribology Letters》2001,11(3-4):143-149
We have investigated the effect of the molecular weight (MW) and film thickness of a perfluoropolyether lubricant, Zdol, on the slider–disk spacing loss, or clearance. The major conclusion of this work is that Zdol films as thin as 10 Å can reduce the slider–disk clearance by 2 nm or more in the molecular weight range of 1000–5000 amu. This is attributed to the attractive van der Waals interaction between the slider and the disk surface that causes the Zdol main chain to interact with the slider surface, giving rise to a friction force. When the film thickness of the lubricant exceeds the monolayer thickness, dewetting can take place. The droplets that form occupy the space between the slider and disk surface reducing the slider–disk clearance by as much as 4 nm. There is a step increase in the acoustic emission signal at the dewetting thickness transition, indicative of a slider–disk interference.  相似文献   

4.
In order to minimize the stiction force caused by contact of the extremely smooth surfaces of head sliders and disks in hard disk drives, texture is usually applied on the disk surface. For future contact/near-contact recording, the stiction-induced high friction between slider and disk will become a problem. Texture on the slider/disk interface will still be an expected method to reduce friction. Recently, it was suggested to texture the slider surface. A protective coating is usually required on the textured slider surface to reduce wear of the texture. The results showed that texture on the slider surface was effective in reducing the friction between head sliders and disks. On the other hand, the texture and coating on the slider surface increase the spacing between the read/write element and the magnetic layer of the disk. The necessary and effective texture height and coating thickness are still not clear. In the present research, island-type textures with different heights (3–18 mn) were formed on slider surfaces by ion-beam etching. Amorphous carbon nitride (a-CNx) coatings of different thicknesses (0–50 nm) were coated on the textured slider surfaces as a protective overcoat. The friction and wear properties of these sliders were evaluated by constant-speed drag tests against hard disks coated with diamond-like carbon (DLC). The results show that 2 nm texture on a slider surface is sufficient for low (0.3–0.5) and stable friction of the slider against the disk in a drag test, and coatings thicker than 5 nm show similar wear resistances of the texture on slider surfaces.  相似文献   

5.
In this paper, the dynamic behavior of pico slider in contact with the disk was calculated. The analysis model consists of a simplified suspension model, an air bearing model, and a slider–disk contact model. The contact model consists of two elements. One is surface roughness model measured by Atomic Force Microscope (AFM) and the other is micro-waviness model. The dynamic behaviors of the tri-pad slider are calculated at several rotation speeds to investigate slider vibration modes during slider–disk contact. The slider oscillation frequency depends on the rotation speed and it saturates about twice as much as eigen frequency of air bearing pitch mode.  相似文献   

6.
Study on the cyclotriphosphazene film on magnetic head surface   总被引:2,自引:0,他引:2  
Stable lubrication is very important to the slider/disk interface with the increasing demand on the life of computer hard disk drive (HDD). The inert lubricant perfluoropolyether (PFPE) on the surface of magnetic hard disk is still prone to be catalyzed to decomposition by the slider material Al2O3. The properties of a partial fluorinated hexaphenoxy cyclotriphosphazene, X-1P, are investigated and its function to reduce the catalytic decomposition of PFPE is discussed. The results of contact start–stop (CSS) tester indicate that the thermal stability of the lubricant was greatly improved in the presence of X-1P, and its film thickness has a great influence on the lubrication properties of the HDD.  相似文献   

7.
Recent technological advances in magnetic storage suggest the feasibility of extremely high-density magnetic recording up to 1 terabit per square inch (1 Tbit=1012 bits) areal densities. Modelling indicates that approximately 3 nanometers (nm) of physical head-disk spacing is required for such high recording densities. When the recording slider is flying at such ultra low spacing over a high-speed rotating disk, it is experiencing disturbances from various different sources and of a wide frequency range. These disturbances may cause the recording slider to vibrate significantly, a condition that is known as fly height modulation (FHM), which may result in data loss. A significant source of excitation is from the surface irregularities of the rotating disk and is termed dynamic microwaviness. The term dynamic microwaviness has been introduced recently to differentiate from regular topographical features that are measured statically. In this paper, the procedure for making reliable dynamic microwaviness measurements of disk media used in hard disk drive (HDD) systems is described. Furthermore, such measurements are performed on different super smooth magnetic disks that are intended for extremely high recording densities using non-contact laser vibrometry. The root-cause of the dynamic microwaviness is investigated by measuring disk topographical features under static conditions and the interaction with system dynamics. It is found that dynamic microwaviness is primarily due to topographical features of spatial wavelengths ranging from 58.8 to 250 μm, and secondarily due to system dynamic effects.  相似文献   

8.
In this paper, we will discuss Surface Reflectance Analyzers (SRA) and their applications in tribology. We will show how the SRA instrument can be used to locate and quantify tribological parameters, such as carbon wear and lubricant buildup, at the head/disk interface. This damage can be caused by a variety of head/disk interactions. In one case, we will demonstrate the importance of slider crown on tribological performance by quantitatively comparing the damage to the disk surface during continuous start–stop test in the laser texture zone. In another case we will demonstrate the importance of slider air bearing design in ramp load/unload tests by quantitatively comparing the amount of damage near the OD of the disk. Ramp load/unload damage manifests itself in various forms. In addition to local carbon wear and lubricant effects, there is also debris from the ramp wear and occasional “dings”. We will show how the SRA system can be used to distinguish and quantify these various types of damage.  相似文献   

9.
Wear of carbon coated sub-ambient pressure “pico” sliders is investigated during sweep testing as a function of interference height, slider design and sliding distance using atomic force microscopy. The wear results from atomic force microscopy measurements are compared with wear measurements of the carbon overcoat using Raman spectroscopy. The effect of interference on wear and disk burnishing is studied using acoustic emission measurements and atomic force microscopy. The results show that wear of a slider is higher for larger interference height and higher stiffness of the air-bearing.  相似文献   

10.
The dynamics of the load/unload process are studied using a so-called ‘periscope approach’ which allows us to follow the slider motion during load/unload (L/UL) with the beam of a Laser Doppler Vibrometer (LDV). LDV signals and acoustic emission signals are obtained for three different slider airbearing designs and for load/unload conditions with different vertical velocities and spindle speeds. The load process is investigated statistically using the acoustic emission signal in order to determine the effect of vertical load speed and spindle speed on the probability of contacts between slider and disk.The results indicate that small vertical load speeds decrease the number of head/disk contacts, and that slider designs with a cavity centered close to the trailing edge enable a smooth unloading process.  相似文献   

11.
In this paper we theoretically study a new concept of reducing the shear stress at the slider/disk interface for contact recording design by a second layer of liquid sandwiched between the slider and the PFPE lubricant. Our results show that a very thin layer of liquid with a much lower viscosity than that of PFPE is able to reduce the shear stress by a few orders of magnitude. Slight slippage of the second liquid at the slider surface further reduces the shear stress by a few times.  相似文献   

12.
One of the most important reliability issues in an information storage device is the contamination problem. The slider and disk can be damaged by the particles intruded into the slider/disk interface (SDI). In this work, in order to monitor the slider/disk interaction due to particle injection the acoustic emission (AE) method, which is typically utilized for the detection of slider contact, was used. The raw as well as frequency spectrum of the AE signal were obtained during the particle injection test. The particles were artificially injected inside the test apparatus to simulate the effect of contamination on the slider/disk interaction. SiC and polystyrene particles were used for the tests. As a result, the 1st torsional and bending mode frequencies of the nano-slider were observed when 1 μm SiC particles and 60 nm polystyrene particles were injected into the SDI. Also, it was shown that the particle behavior at the SDI can be predicted from the characteristics of the AE raw signal.  相似文献   

13.
A simulation approach that relies on an analysis of the flow patterns closest to an air bearing surface (ABS) was used to predict the lubricant accumulation on the ABS of a head slider. The lubricant accumulation patterns obtained through the simulation were in good agreement with experimental results and with our experimental apparatus. We used this method to study and analyze flow pattern droplets close to the trailing edge of a number of sliders and found that there was a reverse flow from the slider’s trailing edge on both sides of the trailing pad and behind the read/write element, which could result in a lubricant accumulation on the slider surface close to the trailing edge of a slider and thus lead a transient slider vibration and magnetic-signal loss in a hard disk drive. Further simulations and analyses revealed that the reverse flow is dependent on the depth of slider surface on adjacent to the trailing edge of the slider, and that if the depth is less than a critical depth, which is dependent on the velocity of the disk, the reverse flow could be eliminated. On the basis of these findings, we propose a new ABS design concept for effectively suppressing the reverse flow of lubricants from the trailing edge of the slider. In this concept, the slider has a “smooth flow pad” and the depths of outlet recesses are specified as being smaller than the critical depth. It was confirmed by both simulation and experiment that lube accumulation on the slider surface is obviously decreased and the reliability of a hard disk drive with this air bearing design is consequently improved.  相似文献   

14.
采用优化设计方法优化一种皮米磁头的形状,能够降低磁头飞高,提高硬盘的存储密度及磁头的飞行稳定性。优化设计以磁头俯仰角和形状尺寸为约束,以磁头在磁盘半径方向内侧、中间、外侧稳定飞行时的飞行高度和侧倾角与优化目标值间的波动最小为优化目标建立优化模型,采用模拟退火算法对优化模型求解。优化结果表明,优化后磁头的飞浮高度可从7 nm降低到5 nm,而且磁头寻轨时磁头的稳态飞行波动得到明显改善,能够满足工程上对飞高的波动性要求。最后,比较了提高磁盘转速后初始磁头和优化磁头的稳态飞行特性,结果表明磁盘转速对优化结果有影响,改变磁盘转速建立新的优化模型可以得到适合新条件的优化磁头。  相似文献   

15.
A numerical model is developed to study the effect of texture on air bearing sliders for large Knudsen numbers. The effect of texture location, texture size, and density on the pressure generation is studied. First, a textured plane slider parallel to the disk surface is investigated, and the texture parameters are determined that result in optimum pressure generation. Then, a plane inclined slider is studied using optimum texture parameters found in the parallel slider case. Thereafter, the effect of texture on the steady state flying characteristics of an actual magnetic recording slider is investigated. Finally, the flying height modulation, pitch, and roll motion of a textured slider (pico and femto form factors) are determined numerically by exciting the slider using a step on the disk. Comparison of the results for textured and untextured sliders is made. It is found that textured sliders show better dynamic performance compared to the untextured sliders in terms of stiffness and damping.  相似文献   

16.
Slider/disk contacts of nano and pico sliders are investigated using an acoustic emission sensor and a high bandwidth laser Doppler vibrometer (LDV). The following cases are studied: (a) influence of scratch impact on the airbearing stiffness; (b) influence of lubricant thickness on slider dynamics for single bump impacts; (c) influence of lubricant thickness on slider vertical stick–slip vibrations; (d) dynamics of take-off and landing. Linear time frequency analysis is applied to study simultaneously the impact response of the airbearing and the slider torsional and bending modes. The contact dynamics of single bump impacts is examined as a function of disk velocity and lubricant thickness. Increased slider vibrations are found for thick lubricant films both for sliding contacts as well as for single bump impacts. During the transition from sliding to flying a change of the bending mode frequency is observed.  相似文献   

17.
The design of a head-disk interface for ultra-low flying height has been studied from the viewpoint of contact vibration. It is known that a super-smooth disk is necessary for a slider to fly at an ultra-low flying height; however, such a disk increases the friction force, which potentially increases the vibration of the slider. To solve this problem, the head-disk interface must be optimized to reduce this increased vibration. It has been shown that a large pitch angle and center-pad-mounted read/write elements have advantages in terms of slider/disk contact. It has also been found that a micro-texture on the air bearing surface can prevent contact vibration. Moreover, a frequency-shift-damping slider was found to damp the vibration effectively. To further investigate these findings, numerical simulation and modeling of slider dynamics during contact have been performed. Their results revealed two zones of contact vibration: a stable zone and an unstable zone.  相似文献   

18.
The air bearing’s response to regions of elevated temperature on its bounding surfaces (the slider and disk) may be an important consideration in the head–disk interface design of heat-assisted magnetic recording (HAMR) systems. We implement the general non-isothermal molecular gas lubrication equation into an iterative static solver and dynamic air-bearing solver to evaluate the effect of localized heating of the air-bearing surface (ABS) due to the near-field transducer (NFT). The heat-dissipating components in our simplified HAMR design are the NFT, laser diode, and thermal flying height control (TFC) heater. We investigate the effect of each HAMR slider component on ABS temperature and thermal deformation and the slider’s flying height. The NFT induces a localized thermal spot and protrusion on the larger TFC bulge, and it is the location of maximum temperature. This ABS temperature profile alters the air-bearing pressure distribution, increasing the pressure at the hot NFT location compared with predictions of an isothermal air-bearing solver, so that the center of the pressure acting on the ABS is slightly closer to the trailing edge, thereby decreasing the pitch angle and increasing the minimum flying height. Other researchers have shown that the NFT’s thermal response time may be much faster than its protrusion response time (Xu et al. in IEEE Trans Magn 48:3280–3283, 2012). The slider’s dynamic response to a time-varying NFT thermal spot on the ABS while the combined TFC and NFT induced thermal protrusion remains constant is investigated with our dynamic air-bearing solver. We simulate the slider’s step response to a suddenly applied ABS temperature profile and a pulsed temperature profile that represents laser-on over data zones and laser-off over servo zones. The sudden (step) or rapid (pulse) increase in ABS temperature induces a sudden or rapid increase in pressure at the NFT location, thereby exciting the air bearing’s first pitch mode. For the slider design and simulation conditions used here, the result of the pitch mode excitation is to alter the position of the center of pressure in the slider’s length direction, thereby changing the pitch moment. In response, the pitch angle and minimum flying height change. The step response decays after approximately 0.15 ms. Because the laser duty cycle is much shorter than this response time, a periodic disturbance is predicted for the center of pressure coordinate, pitch angle, and minimum flying height. The peak-to-peak minimum flying height modulations are relatively small (only up to 0.126 nm); more significantly, the time-averaged minimum flying height increases 0.5 nm for the NFT that reached 208 °C compared to simulations of the isothermal ABS at ambient temperature.  相似文献   

19.
With the decrease in slider flying height, slider flying instability caused by slider–disk interactions is becoming a big concern. Novel technology has to be employed to further improve our understandings about slider–disk interaction. In this work, a slider flying height-attitude testing (3D) system was employed to study slider–disk interaction during a slider landing process to demonstrate its capability for the application. It is shown that great details of slider–disk interactions and subtle variations of the slider flying attitude during the landing process can be revealed with the 3D system. Slider dynamic flying height and attitude (pitch and roll angles) during the landing process can be determined from the data recorded in one test. Furthermore, analysis in frequency domain can be done not only on flying height, but also on pitch and roll angles directly. It is found that the slider landing process can have different stages during which slider performance and characteristics of slider–disk interaction are different.  相似文献   

20.
The use of patterned media is a new approach proposed to extend the recording densities of hard disk drives beyond 1 Tb/in.2. Bit-patterned media (BPM) overcome the thermal stability problems of conventional media by using single-domain islands for each bit of recorded information, thereby eliminating the magnetic transition noise (Albrecht et al., Magnetic Recording on Patterned Media, 2003). Considering steady state conditions, we have transferred the pattern from the disk surface onto the slider surface and have investigated the pressure generation due to the bit pattern. To reduce the numerical complexity, we have generated the bit pattern only in the areas of the slider near the trailing edge, where the spacing is small. Cylindrical protrusions were modeled using very small mesh size on the order of nanometers to obtain the flying characteristics for the entire slider air bearing surface (ABS) using the “CMRR” finite element Reynolds equation simulator (Duwensee et al., Microsyst Technol, 2006; Wahl et al., STLE Tribol Trans, 39(1), 1996). The effect of pattern height, pattern diameter, slider skew angle, and slider pitch angle on flying height of a typical slider is investigated. Numerical results show that the flying height decreases for a patterned slider and the change in flying height is a function of the pattern height and ratio of the pattern diameter to the pattern pitch. In comparison to discrete track media, the flying height loss is larger for a patterned slider disk interface for the same recessed area of pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号