首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对超细WC-10wt%Co-X硬质合金的机械性能进行了研究:通过喷雾干燥,用舍AMT和硝酸钴溶液来制取超细原始粉末,再用机械一化学工艺,将原始粉末还原和碳化成WC/Co粉末:直径大约为100nm的WC粉末与粘结剂Co均匀地混合,在n-已烷和球料比为5:1的条件下湿磨24小时,过后再干燥24小时,并在Imtorr压力下和1375℃二的温度下进行烧结:为了比较超细硬质合金的显微结构与机械性能,将直径为0.57μm~4μm的WC粉末与Co粉末进行混合,随后在1mtorr压力下和1375℃二的温度下烧结:添加不同数量的TaC、Cr3C2、和VC晶粒长大抑制剂到WC-10wt%Co超细硬质合金中,发现烧结后超细硬质合金中的Co相在WC晶粒的边缘快速产生:Hall-Petch类型关系说明WC—10wt%Co硬质合金的硬度是随着WC晶粒度的下降而增加,而抗弯强度则取决于Co粘结相中的溶解度。  相似文献   

2.
本文采用亚微米WC粉和纳米Co粉、亚微米WC粉和高能球磨后具有纳米晶组织的微米级Co粉这两种具有不同粒径匹配的混合粉末作为原料粉末,利用放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金。对不同原料粉末的SPS过程及烧结试样的显微组织和性能进行了系统的对比分析。实验结果表明,以两种混合粉末为原料均获得了平均晶粒尺寸在200nm以下的超细硬质合金材料,其中,采用亚微米WC粉和高能球磨的微米级Co粉利用SPS技术制备的材料相对密度达到98%以上,硬度达到HRA94.5,断裂韧性达到13.50MPa•m1/2,表明具有优良的综合性能。而采用亚微米WC粉和纳米Co粉利用SPS技术制备出的超细晶硬质合金的组织均匀性和性能较差。根据SPS技术的特殊烧结机理,对采用不同粒径匹配和结合状态的WC和Co混合粉末的SPS致密化机制进行了分析。  相似文献   

3.
研究了纳米晶WC-10Co硬质合金的力学性能和显著结构。这种纳米晶WC-10Co硬质合金粉末是将含有偏钨酸铵(AMT)和硝酸钴的溶液喷雾干燥制得的纳米晶前驱体粉末再经过还原和碳化制备的。直径约100nm的WC粉末与Co炽结相混合均匀,并在1毫乇压力和1375℃下进行烧结。为了与纳米晶料WC-10Co的显微结构和力学性能相比较,将直径范围为0.57-4μm的工业用WC粉末与Co粉混合,并在与纳米晶粉末相同的条件下进行烧结,在纳米晶WC-10Co硬质合金中加入不同量的TaC、Cr3C2和VC作为晶粒长大抑制剂。为研究WC-10Co硬质合金中Co粘结相的显微结构,以WC-10Co硬质合金烧结温度下制备了Co-W-C合金。WC-10Co硬质合金随着WC粒度的减小而增加的硬度因而符合霍尔-佩奇型关系式。WC-10Co硬质合金的断裂韧性随着Co粘结相的HCP(密排六方相)/FCC(面心六方相)比的增大(由于HCP/FCC相引起的)而提高。  相似文献   

4.
研究了不同粒度的WC粉末对WC/10Co注射成形工艺(PIM)的影响,分析了WC粒度对喂料流变性、注射坯质量、脱脂工艺和烧结工艺的影响机理。结果表明:WC粒度越小,WC/10Co喂料流变性越差,注射坯质量越低,溶剂脱脂速率越高,合金形状偏差越大。超细WC/10Co喂料存在粉末团聚颗粒、粘结剂包裹不充分,其热稳定性低、流动性降低56%,注射坯致密度下降5%;超细WC-10Co合金的线收缩率达到20.80%,尺寸偏差为2.85%,脱脂-真空烧结时易出现脱碳现象。  相似文献   

5.
采用亚微米WC粉和纳米Co粉以及亚微米WC粉和微米Co粉的混合粉末作为原料,利用放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金.对比研究表明,以两种混合粉末为原料均获得了平均晶粒尺寸约为200 nm的超细硬质合金材料.其中,采用微米Co粉制备的材料的相对密度达到98.0%以上,硬度HRA达到94.5,断裂韧性达到13.50 MPa·m1/2,具有优良的综合性能;而采用纳米Co粉制备的硬质合金的组织均匀性和性能较差.根据SPS技术的烧结机理,对混合粉末的致密化机制进行了分析.  相似文献   

6.
多元碳化物硬质合金   总被引:1,自引:0,他引:1  
本文研究了含有6wt%与wt%钴和添加了碳化钽(TaC)和碳化钒(VC)的钨钴硬质合金(WC-Co)的结构和力学性能。TaC含量恒定为5wt%,而VC含量为0.4%wt%-10wt%。当VC含量没有超过其在固态钴粘结剂中的溶解极限时,硬质合金基体碳化物相呈现超细晶粒结构。碳化物晶粒度为0.2 μm-0.5μm含钴6wt%和10wt%的超细硬质合金的典型性能值如下:矫顽磁力(Hc)分别为417Oe和383Oe;维氏硬度(HV5)分别为1744kg/mm^2和1605kg/mm^2。  相似文献   

7.
将原位合成WC-6Co复合粉末采用干袋式冷等静压压制成型(压制压力1×10~8 Pa、保压时间15 s),将压制好的坯料采用低压烧结炉烧结(烧结温度1360℃、烧结时间40 min、加压5 MPa、保温保压时间20 min),烧结制备超细YG6硬质合金,对合金的形貌、金相组织及物理力学性能进行分析。结果表明:原位合成WC-6Co复合粉末制备的超细YG6硬质合金,晶粒异常长大,WC平均晶粒尺寸为0.8μm,硬度HV_(30)为(21500±100) MPa,较传统超细YG6X硬度高。再将WC-6Co复合粉末采用滚动湿磨、压力式喷雾干燥、掺成型剂、挤压成型、低压烧结等工序制备超细YG6硬质合金,研究不同晶粒长大抑制剂配比、球磨时间、挤压压力、烧结温度对合金性能的影响。结果表明:添加0.3%VC、0.8%Cr_3C_2(质量分数),湿磨48 h,挤压压力24 MPa,烧结温度1340℃,制备的超细YG6硬质合金WC晶粒均匀,无异常长大的WC晶粒,WC平均晶粒度尺寸0.4μm,呈多边形,外形较圆。强度、硬度最高,抗弯强度TRS为(2250±20) MPa、硬度HV30为(22600±100) MPa。断口形貌为沿晶断裂,沿WC与WC晶界断裂或WC与Co晶界断裂。  相似文献   

8.
以N-甲基吡咯烷酮分散的石墨烯代替常规的冶金炭黑作为碳源,采用短流程原位还原碳化反应制备出纳米晶WC-Co复合粉末。采用放电等离子烧结系统对复合粉末进行快速烧结致密化。结果表明,石墨烯作为碳源可显著降低原位还原碳化反应温度,复合粉末粒径细小且分布均匀。得到的超细晶硬质合金块体材料平均晶粒尺寸约为290 nm,HV_(30)硬度值为13.877±0.131 GPa,断裂韧性KIC值为8.3±0.1 MPa·m~(1/2)。通过HRTEM观测表明,试样中WC/WC晶界、WC/Co相界、WC/C相界具有很高的匹配度。  相似文献   

9.
本文研究了含有6wt%与10wt%钴和添加了碳化钽(TaC)和碳化钒(VC)的钨钴硬质合金(WC—Co)的结构和机械性能。TaC含量恒定为5wt%,而VC含量范围为0.4wt%—10wt%。当VC的含量未超过其在固态钴粘结剂的溶解极限时,硬质合金基体碳化物相呈现超细晶粒结构。碳化物晶粒度为0.2μm~0.5μm。含6wt%和10wt%Co超细硬质合金的典型性能值为:矫顽磁力值Hc分别为4170e、3830e;维氏硬度值HV5分别为1744kg/mm^2、1605kg/mm^2。  相似文献   

10.
以N-甲基吡咯烷酮分散的石墨烯代替常规的冶金炭黑作为碳源,采用短流程原位还原碳化反应制备出纳米晶WC-Co复合粉末,石墨烯作为碳源可显著降低原位还原碳化反应温度,复合粉末粒径细小且分布均匀。采用放电等离子烧结系统对复合粉末进行快速烧结致密化,得到平均晶粒尺寸为~290nm的超细晶硬质合金块体材料,具有硬度值HV30为1387.7±13.1kg/mm2,断裂韧性KIC值为8.3±0.1MPa?m1/2的良好力学性能,通过HRTEM观测得到试样中WC/WC晶界、WC/Co相界、WC/C相界具有很高的匹配度。  相似文献   

11.
目的为解决超细/纳米WC-Co热喷涂时易于脱碳等瓶颈问题,制备具有高的硬度、断裂韧性、耐磨性和表面质量等优异综合性能的超细及纳米结构硬质合金涂层,并推广其在工业领域中的应用。方法以原位合成技术批量制备的超细/纳米WC-Co复合粉末为原料,利用团聚造粒技术制备得到具有高球形度和致密性,并保持原有超细/纳米结构的喷涂喂料粉末,利用超音速火焰喷涂工艺制备低脱碳、高致密的超细结构WC基涂层。结果降低喂料粉末孔隙度可有效减少涂层中W2C等脱碳相的含量,在优化工艺下制备的超细结构WC基涂层的硬度达到1450HV0.3以上,韧性相对于常规微米结构涂层提高40%以上,在两种载荷和磨料条件下均表现出更高的耐磨性。结论利用原位反应技术批量合成的超细/纳米WC-Co复合粉制备的硬质合金涂层具有优良的综合性能,可应用于对涂层的硬度、耐磨性、强韧性配合和表面质量有较高要求的工况。  相似文献   

12.
以超细WC粉末和超细WC-6Co复合粉末为原料,添加VC/Cr3C2作为晶粒长大抑制剂,同时进行配碳,采用高能球磨和气压强化烧结制备晶粒度小于0.5μm的WC-0.5Co超细硬质合金,研究了不同VC/Cr3C2添加量及配碳量对其组织与性能的影响。结果表明:VC/Cr3C2有效抑制了烧结过程中WC晶粒的长大,显著提高了WC-0.5Co超细硬质合金的硬度。当VC/Cr3C2添加量为0.73%(质量分数,下同)时,合金的硬度(HV0.05)最高,达到32 658 MPa;同时一定的配碳量有利于控制合金中的脱碳,提高合金性能,当配碳量为0.2%时,WC-0.5Co-0.73VC/Cr3C2合金的综合力学性能最好,断裂韧性为6.935 MPa·m1/2,维氏硬度(HV0.05)为32 216 MPa。  相似文献   

13.
采用粉末冶金制备技术,以粗WC粉末、Co粉和WC+Ni3Al预合金粉末为原料制备出WC-40vol%(Co—Ni,Al)硬质合金。利用扫描电镜和透射电镜研究了不同NbAl含量对WC-40vol%(Co—Ni3Al)硬质合金中WC晶粒形状的影响规律。结果表明:W在Co粘结相中的固溶度接近25.4wt%,而W在Ni,Al粘结相中的固溶度接近9.5wt%,随着NbAl含量的增加,粘结相对W的固溶度减小,合金中的WC晶粒圆钝和细小;WC晶粒表面上出现明显的台阶。相应的,延长烧结时间,WC—Co—Ni3Al硬质合金具有与WC—Co硬质合金相同的WC生长行为,WC-40vol%(Co—Ni3Al)硬质合金中的WC晶粒表面上的台阶处出现明显的刻面。  相似文献   

14.
超细晶WC-10Co-VC-NbC硬质合金的组织与性能   总被引:1,自引:1,他引:0  
通过球磨与真空烧结方法,制备了含VC与NbC的超细晶WC-10Co硬质合金.采用X射线衍射、扫描电镜和硬度及断裂韧性测试,研究了微量VC与NbC对超细晶WC-10Co硬质合金的组织与性能影响.结果表明,添加微量VC与NbC,能明显提高基体合金的硬度与断裂韧性,降低硬质合金中WC晶粒的长大,WC的平均晶粒尺寸从673 nm降低至430 nm.同时也减少了烧结过程中Co3W3C相的形成.  相似文献   

15.
刘寿荣  刘宜 《硬质合金》1996,13(3):129-132
根据WC-Co硬质合金的真实断裂韧性KIC与维氏硬度HV间的实验关系规律和线弹性断裂力学分析,讨论了由Viswanadham和Venables提出的Palmpvist表面断裂韧性W和维氏硬度HV间的实验关系1/W=AH-B的实用性和W=β·GIC(GIC为应变释放率)假设的可靠性.结果表明,对于WC-Co硬质合金,难以用Palmqvist表面韧性取代KIC。  相似文献   

16.
研究了火花等离子烧结工艺与YG10、YGl2两种纳米硬质合金性能的关系。然后采用火花等离子烧结技术制备了硬质合金功能梯度材料,该材料由纳米WC/10%Co、纳米WC/12%C。、微米WC/15%Co混合粉以及不锈钢圆片烧结而成。显微硬度压痕显示该材料各层间的应力较小。  相似文献   

17.
放电等离子烧结制备超细WC基硬质合金   总被引:1,自引:0,他引:1  
采用纳米碳化钒(V8C7)粉末作为晶粒抑制剂及放电等离子烧结(SPS)方式制备超细WC基硬质合金.X射线衍射结果表明:超细WC基硬质合金主要由WC和Co3C两相组成,随着温度的升高,WC的衍射峰逐渐向小角度偏移.扫描电镜结果表明:SPS和纳米V8C7粉末对超细WC基硬质合金的微观组织具有重要影响.SPS使超细WC基硬质合金在较低温度下(1200℃)实现致密化;纳米V8C7粉末可以有效抑制超细WC基硬质合金中WC的晶粒长大,1200℃时WC的晶粒尺寸约500 nm.力学性能结果表明:1200℃时超细WC基硬质合金具有较高的性能(相对密度99.5%,洛氏硬度93.2,断裂韧性12.5 MPa·m1/2).  相似文献   

18.
超细碳化钨粉末特性对金刚石锯片刀头显微结构的影响   总被引:1,自引:0,他引:1  
采用超细WC粉末和工业级的Sn、Ni、Co、Cu粉末以及金刚石为原料,经真空烧结后制备成金刚石锯片刀头。用扫描电镜(SEM)观察了WC粉末和合金的形貌,用能量散射谱(EDS)测试了合金的微区成分分布。研究结果表明,超细WC粉末的添加能改善Sn-Ni-Co-Cu结合金刚石锯片刀头的显微结构,超细WC含量的增加有利于材料晶粒的细化和强度提高,Cu是烧结中产生液相和使成分偏析的重要影响因素,Co对晶粒异常生长影响很大,Sn的添加有利于晶粒的细化。  相似文献   

19.
据稀有金属网于1995年No1报导,北京有色金属研究总院最近研制成功用等离子体熔炼法制取WC-Co硬质合金粉末。传统的制取方法是要长时间的破碎研磨,工艺冗长复杂。此新工艺可直接得到不同粒度的粉末,可按需要制得不同山含量硬质含金粉末,粉末的氧含量低,一般为0.1~0.15%。由该粉末的制成的合金经磁饱和强度和X射线衍射分析表明。WC-Co的合金化程度比国内同类产品要高。金相分析表明WC的粒子表面Co层分布均匀。该粉末的粒形呈/球形或者椭圆形,流动性好;粉末粒径范围为10-80μm。WC-Co粉经等离子体喷涂试验,效果很好,Co…  相似文献   

20.
选择合适的WC和Co粉用于生产硬质合金   总被引:1,自引:0,他引:1  
最近几年已经大幅度地提高了硬质合金材料的性能。在这些改进中的一个关键性的因素是市场上可以买到超细的WC和Co粉末。0.7-0.9μm范围内的亚微米WC粉末已经在切削刀具和耐磨件方面是相当普遍,并正在取代较大晶粒的WC粉末。最初由于印刷电路板用微型钻头的生产需要导致了甚至小到0.2μm的很细WC粉末的研制,现在应用的日益扩大完全得益于超细WC粉末(0.4μm),如较大直径的钻头和立铣刀、木工刀具、剪刀、刀片、模具、喷嘴和耐磨件。通过专有的RCR技术开发的费用低廉的亚微米WC粉末对这种进行作出了贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号