首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Zhou W  Cai L 《Applied optics》1999,38(23):5058-5065
A novel, to our knowledge, optical readout for optical storage with phase jump is presented. In the readout scheme two coherent laser beams are focused on an optical disk with one beam scanning along pits and the other along land. When the probe beam scans across a pit, two phase jumps will take place in the interference resultant of the two beams if the phase difference between two beams is prefixed at pi, resulting in a phase pulse of 180 deg. The slopes of rising and falling edges of the phase pulse are infinite, and they are not affected by the intensity variation of the light source, stray light, and the vibration of the disk. Therefore this phase pulse can be used to read out the information on an optical disk. The use of phase jump will improve the signal-to-noise ratio of the readout signal and enhance the density of optical storage. An optical readout with phase jump was constructed. Both the theoretical design and the experimental verification are conducted. Experimental results show that the proposed optical readout is feasible.  相似文献   

2.
Peng L  Varma MM  Cho W  Regnier FE  Nolte DD 《Applied optics》2007,46(22):5384-5395
Adaptive spinning-disk interferometry is capable of measuring surface profiles of a thin biolayer with subnanometer longitudinal resolution. High-speed phase modulation in the signal beam arises from the moving surface height profile on the spinning disk and is detected as a homodyne signal via dynamic two-wave mixing. A photorefractive quantum-well device performs as an adaptive mixer that compensates disk wobble and vibration while it phase-locks the signal and reference waves in the phase quadrature condition (pi/2 relative phase between the signal and local oscillator). We performed biosensing of immobilized monolayers of antibodies on the disk in both transmission and reflection detection modes. Single- and dual-analyte adaptive spinning-disk immunoassays were demonstrated with good specificity and without observable cross-reactivity. Reflection-mode detection enhances the biosensing sensitivity to one-twentieth of a protein monolayer, creates a topographic map of the protein layer, and can differentiate monolayers of different species by their effective optical thicknesses.  相似文献   

3.
Imperfections and nonrobust behavior of practical multilevel spatial light modulators (SLMs) degrade the performance of many proposed full-complex amplitude modulation schemes. We consider the use of more robust binary SLMs for this purpose. We propose a generic method, by which, out of K binary (or 1 bit) SLMs of size M×N, we effectively create a new 2(K)-level (or K bit) SLM of size M×N. The method is a generalization of the well-known concepts of bit plane representation and decomposition for ordinary gray scale digital images and relies on forming a properly weighted superposition of binary SLMs. When K is sufficiently large, the effective SLM can be regarded as a full-complex one. Our method is as efficient as possible from an information theoretical perspective. A 4f system is discussed as a possible optical implementation. This 4f system also provides a means for eliminating the undesirable higher diffraction orders. The components of the 4f system can easily be customized for different production technologies.  相似文献   

4.
We describe data compression in phase-shifting digital holography. We demonstrate by experimentation that an image of a diffusely reflecting object can be reconstructed only by phase data of the derived complex amplitude. It is shown that reduction of the bit depth of the phase data does not seriously damage the image even down to 1 bit. We observe enhancement of halo in the image with low bit depths. This tendency is verified quantitatively by a one-dimensional simulation. Our procedure for smoothing the images that result from the data-compression methods is shown to be effective.  相似文献   

5.
The phase of a superposition state is a quintessential characteristic that differentiates a quantum bit of information from a classical one. This phase can be manipulated dynamically or geometrically, and can be exploited to sensitively estimate Hamiltonian parameters, perform faithful quantum state tomography and encode quantum information into multiple modes of an ensemble. Here we discuss the methods that we have employed to manipulate and exploit the phase information of single-, two-, multi-qubit and multi-mode spin systems.  相似文献   

6.
Digital information in optical data storage systems can be encoded in the intensity, in the polarization state, or in the phase of a carrier laser beam. Intensity modulation is achieved at the surface of the storage medium either through destructive interference from surface-relief features (e.g., CD or DVD pits) or through reflectivity variations (e.g., alteration of optical constants of phase-change media). Magneto-optical materials make use of the polar magneto-optical Kerr effect to produce polarization modulations of the focused beam reflected from the storage medium. Both surface-relief structures and material-property variations can create, at the exit pupil of the objective lens of the optical pickup, a phase modulation (this, in addition to any intensity or polarization modulation or both). Current optical data storage systems do not make use of this phase information, whose recovery could potentially increase the strength of the readout signal. We show how all three mechanisms can be exploited in a scanning optical microscope to reconstruct the recorded (or embedded) data patterns on various types of optical disk.  相似文献   

7.
We present an optical scheme to encode and decode 2 bits of information into different orbital angular momentum (OAM) states of a paraxial optical beam. Our device generates the four light angular momentum states of order ±2 and ±4 by spin-to-orbital angular momentum conversion in a triangular optical loop arrangement. The switching among the four OAM states is obtained by changing the polarization state of the circulating beam by two quarter-wave plates, and the 2 bit information is transferred to the beam OAM exploiting a single q plate. The polarization of the exit beam is left free for an additional 1 bit of information. The switching among the different OAM states can be as fast as a few nanoseconds, if suitable electro-optical cells are used. This may be particularly useful in communication systems based on light OAM.  相似文献   

8.
Gerber RE  Mansuripur M 《Applied optics》1995,34(35):8192-8200
In optical-disk data-storage systems, the signal that provides tracking information is dependent on the groove shape, the optical constants of the materials involved, and the polarization state of the incident light. In this paper, we show that the tracking signal can be described by two measurable quantities, both of which are largely independent of aberrations in the optical system. Using these two quantities, we match the tracking performance of a given disk to an equivalent disk having rectangular grooves-the adjustable parameters being the rectangular groove depth and the duty cycle. By assumption, these rectangular grooves modulate only the phase of the incident beam and disregard its state of polarization. The effective groove depth and the duty cycle thus become dependent on the polarization state of the incident beam. We examine these dependences for various disks having different groove geometries and different combinations of materials.  相似文献   

9.
We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 × 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.  相似文献   

10.
McLeod RR  Walter SK 《Applied optics》2006,45(27):7065-7072
Parallel read and write of optical disks has traditionally used a static grating for read or a linear array of independent lasers for read and write. Depending on the implementation, these systems suffer from coherent cross talk, excessive space between spots, and an inability to independently track. We show that a dynamic acousto-optic grating can generate multiple parallel read/write spots on the disk, each of which can be independently modulated and tracked and all of which are incoherent in less that a bit period. The resulting disk pickup can potentially reach gigabit per second transfer rates with only a modest increase in the drive complexity.  相似文献   

11.
Liang R  Erwin JK  Mansuripur M 《Applied optics》2000,39(13):2167-2173
We describe a method of measuring the relative optical phase on reflection between amorphous and crystalline regions of the phase-change media of optical data storage. With a red He-Ne laser (wavelength, 632.8 nm) the relative phases on two quadrilayer optical disk stacks were measured and found to be ~40 degrees . The results are in good agreement with the calculated values based on the known layer thicknesses and refractive indices of the stacks. For calibration purposes the height of a known step on an otherwise flat silicon substrate was measured with the same apparatus. The proposed method is fairly simple to set up, can measure both front-surface and through-substrate types of optical disk, and can be used with any laser that has long coherence length.  相似文献   

12.
After a small aperture the spatial information of a complex optical wavefront is lost, but amplitude and phase information is mixed and transferred to the smoothed wave that emerges from the pinhole. This mixing effect is described in the case of a wavefront with a phase step, which is shifted over the input plane of an optical processor with a pinhole as spatial filter in the Fourier plane. We constructed a polarizing interferometer to demonstrate this continuous phase shift and show that it can be used as a variable retardation wave plate similar to a birefringent compensator, but without crystalline wedges.  相似文献   

13.
A new recording and readout technique for land and groove recording on a magnetic super-resolution (MSR) disk is described. The technique uses specifically premastered clock marks. To generate a stable clock signal, the clock marks are fabricated with short bursts in grooves by wobbling at a different frequency from address information. The clock marks and the address information can be separated from a track error signal. When the extracted clock signal is applied to precise recording and readout of the magneto-optical data marks, the bit error rate becomes lower than that of the conventional clock recording/readout system. Additionally, the crosstalk of the wobbled address information to the magneto-optical signal can be canceled out electronically. This new format is not only suitable for high-density recording but also convenient in the disk manufacturing process  相似文献   

14.
A three-dimensional (3D) object reconstruction technique that uses only phase information of a phase-shifting digital hologram and a phase-only spatial-light modulator is proposed. It is well known that a digital hologram can store both amplitude and phase information of an optical electric field and can reconstruct the original 3D object in a computer. We demonstrate that it is possible to reconstruct optically 3D objects using only phase information of the optical field calculated from phase-shifting digital holograms. The use of phase-only information enables us to reduce the amount of data in the digital hologram and reconstruct optically the 3D objects using a liquid-crystal spatial light modulator without optical power loss. Numerical evaluation of the reconstructed 3D object is presented.  相似文献   

15.
Peng C  Mansuripur M 《Applied optics》2002,41(17):3479-3486
We describe the application of partial-response (PR) signaling in rewritable phase-change optical data storage. No electronic filter is necessary to shape the readout signal to a certain PR target. A PR-like waveform at the output of the read channel is directly achieved by optical recording. A genetic algorithm is used to optimize the parameters for writing and therefore to minimize the difference between the actual readout signal and the ideal PR waveform. With a laser wavelength of 0.66 microm and an objective lens with a numerical aperture of 0.6, four linear densities were examined: 0.4, 0.3, 0.25, and 0.2 microm/bit (without modulation). Results showed that the linear density of 0.25 microm/bit can be realized on a rewritable digital-versatile disk.  相似文献   

16.
Peng C  Mansuripur M 《Applied optics》1999,38(20):4394-4405
We describe the application of partial-response (PR) maximum-likelihood (ML) detection in rewritable phase-change optical data storage. The input to this detector, which is simulated in software, is the actual signal (without any equalization), reproduced from reading of the recorded sequence on an optical disk. The detection algorithm involves the extraction of the impulse response from the readout signal, PR equalization, the adjustment of gain and recovery of clock, ML sequence estimation with the Viterbi algorithm, and analysis of PRML performance. With a laser wavelength of 0.69 mum and an objective lens with a numerical aperture of 0.6, three linear densities are examined: 0.35 and 0.31 mum/bit without modulation code and 0.2 mum/bit with the (1, 7) modulation code. The equalized signal exhibits good eye patterns, especially at the densities of 0.35 and 0.31 mum/bit. Analyses of noise and bit-error rate indicate that jitter, rather than noise, is the main obstacle to realizing ultrahigh density in phase-change media with PRML detection. We also briefly discuss the problem of the inherent nonlinear effect in phase-change readout.  相似文献   

17.
Lin SI 《Applied optics》2011,50(8):1091-1100
Traditional optical storage technology focuses a laser beam on the surface of a disk using objective lenses. The storage capacity is limited. It entirely depends on the effective disk size. Using colored storage technology to increase the storage capacity is a novel approach. Color is used to store information. After the spectrometer reads the data, the original color is computed and the stored information is read. In this study, a color is used to write colors; optical transmission with a hybrid diffractive/refractive lens produces a transmission spectrum, and then the fiber-optic spectrometer reads and analyzes the color and then decodes the information. Based on a 2.4?μm reading spot size and the implementation of tricolor ink, ~4.561 Gbytes can be stored. If the tricolor ink dripping and laser size can be reduced to 1.80?μm, each disk can store data up to 8.1?GB.  相似文献   

18.
Sun X  Zhou L  Li X  Hong Z  Chen J 《Applied optics》2011,50(20):3428-3434
A plasmonic-hybrid-waveguide-based optical phase modulator is proposed and analyzed. The field enhancement in the low-index high-nonlinear polymer layer provides nanoscale optical confinement and a fast optical modulation speed. At 2.5 V drive voltage, a π phase shift can be obtained for a 13-μm-long plasmonic waveguide. Because of its small capacitance and parasitic resistance, the modulation bandwidth can reach up to 100 GHz with a low power consumption of ~9 fJ/bit. The plasmonic waveguide is connected to a silicon wire waveguide via an adiabatic taper with a coupling efficiency of ~91%. The phase modulator can find potential applications in optical telecommunication and interconnects.  相似文献   

19.
Bartlett CL  Kay D  Mansuripur M 《Applied optics》1997,36(32):8467-8473
We quantify the effects of disk tilt and objective lens tilt on the push-pull tracking error signal of an optical disk data storage system. For a grooved disk, such as a recordable compact disk that operates at a laser wavelength of lambda, it is found that disk tilt produces a tracking offset of 0.05lambda per degree of tilt, whereas objective lens tilt produces an offset of 0.012lambda per degree of tilt. The amplitude of the tracking error signal decreases by 2.5% at the disk tilt angle of 0.3 degrees and by 5% at the objective lens tilt of 0.3 degrees . We achieved these simulations with the computer program Diffract, which performs a combination of diffraction and ray-tracing calculations through the entire optical path, from the light source to the detectors.  相似文献   

20.
In this work, we propose a new simple entanglement measurement scheme, which can be utilized to take a measurement for the bright EPR beams generated by a nondegenerate optical parametric amplifier. Owing to the output signal and idler modes being frequency degenerate and in phase, one need not take a measurement for the signal and idler modes, respectively. By virtue of a quarter-wave plate and a half-wave plate, and then inserting a polarizing beam splitter, one can realize the measurements of the correlated phase quadratures and anti-correlated amplitude quadratures, simultaneously. Therefore, phase-locking and local oscillators are avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号