首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, an artificial hip joint can be expected to last, on average, in excess of 15 years with failure due, in the majority of cases, to late aseptic loosening of the acetabular component. A realistic alternative to the problem of wear in conventional joints is the introduction of bearing surfaces that exhibit low wear and operate in the full fluid-film lubrication regime. Contact analyses and friction tests were performed on compliant layer joints (metal-on-polyurethane) and the design of a prototype ovine arthroplasty model was investigated. When optimized, these components have been shown to achieve full fluid-film lubrication.  相似文献   

2.
Tribology of total artificial joints.   总被引:5,自引:0,他引:5  
The tribology of total artificial replacement joints is reviewed. The majority of prosthesis currently implanted comprise a hard metallic component which articulates on ultra high molecular weight polyethylene surface. These relatively hard bearing surfaces operate with a mixed or boundary lubrication regime, which results in wear and wear debris from the ultra high molecular weight polyethylene surface. This debris can contribute to loosening and ultimate failure of the prostheses. The tribological performance of these joints has been considered and a number of factors which may contribute to increased wear rates have been identified. Cushion bearing surfaces consisting of low elastic modulus materials which can articulate with full fluid film lubrication are also described. These bearing surfaces have shown the potential for greatly reducing wear debris.  相似文献   

3.
A simple mixed lubrication model has been developed to predict the asperity contact and wear for the metal-on-metal bearing couple for total hip joint replacements. It has been shown that the femoral head radius has a large effect on the predicted asperity contact and wear depending on the lubrication regime. An increase in the femoral head radius can lead to an increase in wear under a predominantly boundary lubrication regime, but this trend can be reversed under a mixed lubrication regime towards fluid film lubrication. These observations are consistent with the recent experimental findings from hip simulator studies by Smith and co-workers.  相似文献   

4.
New material combinations have been introduced as the bearing surfaces of hip prostheses in an attempt to prolong their life by overcoming the problems of failure due to wear-particle-induced osteolysis. This will hopefully reduce the need for revision surgery. The study detailed here used a hip simulator to assess the volumetric wear rates of large-diameter carbon-fibre-reinforced pitch-based poly(ether-ether-ketone) (CFR-PEEK) acetabular cups articulating against alumina femoral heads. The joints were tested for 25 x 10(6) cycles. Friction tests were also performed on these joints to determine the lubrication regime under which they operate. The average volumetric wear rate of the CFR-PEEK acetabular component of 54 mm diameter was 1.16 mm(3)/10(6) cycles, compared with 38.6 mm(3)/10(6) cycles for an ultra-high-molecular-weight polyethylene acetabular component of 28 mm diameter worn against a ceramic head. This extremely low wear rate was sustained over 25 x 10(6) cycles (the equivalent of up to approximately 25 years in vivo). The frictional studies showed that the joints worked under the mixed-boundary lubrication regime. The low wear produced by these joints showed that this novel joint couple offers low wear rates and therefore may be an alternative material choice for the reduction of osteolysis.  相似文献   

5.
The wear of ultra-high molecular weight polyethylene, the most commonly used bearing material in prosthetic joints, is often substantial, posing a significant clinical problem. For a long time, there has been a need for simple but still realistic wear test devices for prosthetic joint materials. The wear factors produced by earlier reciprocating and unidirectionally rotating wear test devices for polyethylene are typically two orders of magnitude too low, both in water and in serum lubrication. Wear is negligible even under multidirectional motion in water. A twelve-station, circularly translating pin-on-disc (CTPOD) device and a modification of the established biaxial rocking motion hip joint simulator were built. With these simple and inexpensive devices, and with the established three-axis hip joint simulator, realistic wear simulation was achieved. This was due to serum lubrication and to the fact that the direction of sliding constantly changed relative to the polyethylene specimen. The type and magnitude of load was found to be less important. The CTPOD tests showed that the subsurface brittle region, which results from gamma irradiation sterilization of polyethylene in air, has poor wear resistance. Phospholipid and soy protein lubrication resulted in unrealistic wear. The introduction of devices like CTPOD may boost wear studies, rendering them feasible without heavy investment.  相似文献   

6.
Metal-on-metal hip joint tribology   总被引:3,自引:0,他引:3  
The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.  相似文献   

7.
A full fluid ball-in-socket elastohydrodynamic lubrication (EHL) analysis of an artificial hip joint made of a metallic femoral head and ultra-high molecular weight polyethylene (UHMWPE) acetabular cup was considered. Since artificial hips operate in a mixed lubrication mode, wear occurs and wear particles lead to reduced hip lifetimes. This study involves simulating these particles within the lubrication regime. Hip deformation was compared to models employing finite element analysis and the spherical fast-Fourier transform technique. Particle modeling results were compared to suspension modeling experiments by other researchers. Results show a strong influence of lubricant fluid velocity on that of the wear particles.  相似文献   

8.
为优选孔板阀滑阀自锁装置配对副耐磨性能影响因素,选取不同球/盘配对副材料、盘粗糙度和润滑条件开展正交滚滑摩擦试验。敏感性分析结果表明,试验优化参数为:盘材料440C,球材料440C,盘粗糙度Ra = 0.4 μm,润滑条件脂润滑。优选参数配对副在试验后运行良好,球/盘表面形貌无明显磨损,摩擦系数无突变,说明优选参数的抗磨性能满足使用寿命需求。  相似文献   

9.
Slow-speed journal bearings subjected to heavy loads operate in a mixed/boundary lubrication regime. Clearance and lubricant play very important roles in reducing the wear and friction in these bearings. In the present article, an experimental study on heavily loaded slow-speed journal bearings with various radial clearances lubricated with three different lubricants is presented. Lubricants with varying viscosities and containing different percentages of antiwear additives have been used. Bearing surface roughness and out-of-roundness are treated as noise parameters. The results of friction coefficient and total wear have been reported. The experimental results suggest that a lubricant with high viscosity and antiwear additives significantly reduces the coefficient of friction and amount of wear under varying bearing clearances, circularity, and cylindricity. The use of such a robust lubricant may obviate the effect of manufacturing uncertainties. This results in reduction of manufacturing and measurement costs.  相似文献   

10.
This paper presents a unique tribological system that is able to produce no measurable wear of material combination and that reduces friction markedly in the ultralow regime under boundary lubrication. Ultralow friction (0.03) was obtained by sliding hydrogen-free Diamond-Like-Carbon ta-C against ta-C lubricated with Poly-alpha Olefin base oil containing Glycerol Mono-Oleate (GMO) additive. The origin of ultralow friction in these conditions has been investigated by surface analysis techniques. Results are in agreement with the formation of a OH-terminated carbon surface. This new surface chemistry might be formed by the tribochemical reaction of alcohol function groups with the friction-activated ta-C atoms. The origin of low friction could be due to the very low-energy interaction between OH-terminated surfaces.  相似文献   

11.
A method has been developed for monitoring the film-forming properties of antiwear additives in rolling-sliding, lubricated contacts. This makes it possible to study both the kinetics of reaction film growth and also the evolution of the film morphology as a function of rubbing time. The technique has been applied to investigate the behavior of a zinc dialkyl-dithiophosphate (ZDDP) additive solution and to correlate this with simultaneous friction and wear measurements.

The results show that ZDDP forms a thick, solid-like, reaction film in the rubbing tracks, with negligible film growth outside of the track. This film is extremely effective in preventing metal-metal contact. However the film is unevenly-distributed, with its roughness oriented in the direction of sliding. This directional roughness inhibits the entrainment of fluid film in the mixed lubrication regime, increases the proportion of load supported by solid-solid contact and consequently results in the high friction often associated with the use of ZDDP additives.  相似文献   

12.
High hardness, high elastic modulus, low friction characteristics, high wear and corrosion resistance, chemical inertness, and thermal stability are factors that make diamond-like carbon (DLC) coatings the subject of many studies. For the same reasons they also seem suitable for use in, amongst others, machine components and cutting tools. While most studies in the literature focus on the influence of coatings on wear and friction in boundary lubrication and pure sliding contacts, few studies can be found concerning rolling and sliding elastohydrodynamic lubrication (EHL) friction, especially in the mixed and full film regime. In this article tests are carried out in a Wedeven Associates Machine tribotester where an uncoated ball and disc pair is compared to the case of coated ball against uncoated disc, coated disc against uncoated ball, and coated disc against coated ball. The tests are conducted at two different temperatures and over a broad range of slide-to-roll ratios and entrainment speeds. The results are presented as friction maps as introduced in previous work (Bj?rling et al. in J Eng Tribol 225(7):671, 2011). Furthermore a numerical simulation model is developed to investigate if there is a possibility that the hard, thin DLC coating is affecting the friction coefficient in an EHL contact due to thermal effects caused by the different thermal properties of the coating compared to the substrate. The experimental results show a reduction in friction coefficient in the full film regime when DLC-coated surfaces are used. The biggest reduction is found when both surfaces are coated, followed by the case when either ball or disc is coated. The thermal simulation model shows a substantial increase of the lubricant film temperature compared to uncoated surfaces when both surfaces are coated with DLC. The reduction in friction coefficient when coating either only the ball or the disc are almost the same, lower than when coating both the surfaces but still higher than the uncoated case. The findings above indicate that it is reasonable to conclude that thermal effects are a likely cause for the decrease in coefficient of friction when operating under full film conditions, and in the mixed lubrication regime when DLC-coated surfaces are used.  相似文献   

13.
《Wear》2007,262(1-2):93-103
A pin on disc machine was used to investigate the tribological behavior of a diffusion bonded sintered steel, with and without surface treatments of steam oxidation and manganese phosphating, over a wide range of speed (0.2–4 m/s) and applied load (4–500 N) in conditions of dry sliding and starved lubrication by oil impregnation of the porous structure of the materials. Besides the calculated wear rates, the wear mechanisms were determined by examination of the components of the rubbing system (sintered pin, disc and generated debris). A transition from a mild to a severe wear regime was identified, denoted by sharp changes of the wear rate. A transient wear regime, interposed between the mild and severe wear regimes, was detected. The rubbing surface quality degradation was in terms of material displacement around the pin circumference due to a delamination wear mechanism. Such regime was detected for the base sintered steel in dry sliding at 1 m/s for the load range 60–80 N and for both surface treatments in oil impregnated sliding at 0.5 m/s for the load range 200–300 N. Oil impregnation of the base sintered steel expanded the mild wear regime towards higher loads throughout the whole sliding speed range compared to dry sliding. For the lower speeds of 0.2 and 0.5 m/s, manganese phosphated samples in dry sliding exhibited higher transition loads compared to the base sintered steel. The lower oil impregnability of the surface treated samples, due to the sealing of porosity by steam oxidation, led to slightly lower transition loads in oil impregnated sliding, compared to the base sintered steel.  相似文献   

14.
The effect of geometry change of the bearing surfaces owing to wear on the elastohydrodynamic lubrication (EHL) of metal-on-metal (MOM) hip bearings has been investigated theoretically in the present study. A particular MOM Metasul bearing (Zimmer GmbH) was considered, and was tested in a hip simulator using diluted bovine serum. The geometry of the worn bearing surface was measured using a coordinate measuring machine (CMM) and was modelled theoretically on the assumption of spherical geometries determined from the maximum linear wear depth and the angle of the worn region. Both the CMM measurement and the theoretical calculation were directly incorporated into the elastohydrodynamic lubrication analysis. It was found that the geometry of the original machined bearing surfaces, particularly of the femoral head with its out-of-roundness, could lead to a large reduction in the predicted lubricant film thickness and an increase in pressure. However, these non-spherical deviations can be expected to be smoothed out quickly during the initial running-in period. For a given worn bearing surface, the predicted lubricant film thickness and pressure distribution, based on CMM measurement, were found to be in good overall agreement with those obtained with the theoretical model based on the maximum linear wear depth and the angle of the worn region. The gradual increase in linear wear during the running-in period resulted in an improvement in the conformity and consequently an increase in the predicted lubricant film thickness and a decrease in the pressure. For the Metasul bearing tested in an AMTI hip simulator, a maximum total linear wear depth of approximately 13 microm was measured after 1 million cycles and remained unchanged up to 5 million cycles. This resulted in a threefold increase in the predicted average lubricant film thickness. Consequently, it was possible for the Metasul bearing to achieve a fluid film lubrication regime during this period, and this was consistent with the minimal wear observed between 1 and 5 million cycles. However, under adverse in vivo conditions associated with start-up and stopping and depleted lubrication, wear of the bearing surfaces can still occur. An increase in the wear depth beyond a certain limit was shown to lead to the constriction of the lubricant film around the edge of the contact conjunction and consequently to a decrease in the lubricant film thickness. Continuous cycles of a running-in wear period followed by a steady state wear period may be inevitable in MOM hip implants. This highlights the importance of minimizing the wear in these devices during the initial running-in period, particularly from design and manufacturing points of view.  相似文献   

15.
Plateaued surfaces are surfaces that have been machined to simulate those that result from normal running in and are said to have advantages over conventional or non-plateaued surfaces. However, the evidence is lacking. This study evaluates the tribological performance of plateaued and non-plateaued surfaces on a pin-on-disk tribometer. The honing pattern of an engine cylinder bore was simulated on the disks. These disks have similar average surface heights with either plateaued or non-plateaued surface finish. Friction, wear and scuffing resistance of plateaued and non-plateaued disks were evaluated. Results from the pin-on-disk tribometer show that in the hydrodynamic lubrication regime plateaued and non-plateaued disks have the same friction, while in the mixed lubrication regime the plateaued surface has less friction. The author's findings also reveal that plateaued surfaces tend to have higher wear resistance but lower scuffing resistance. It also confirms the conventional wisdom that plateaued surfaces have shorter running-in wear period.  相似文献   

16.
A. Begelinger  A.W.J. De Gee 《Wear》1974,28(1):103-114
The mechanism of thin film lubrication of sliding point contacts of AISI 52100 steel has been studied as a function of load, sliding speed, composition and temperature of the lubricant.Below certain critical combinations of Hertzian pressure, speed and temperature the surfaces are kept apart by an elastohydrodynamic lubricant film. The load carrying capacity of this film depends primarily on the effective viscosity of the lubricant in the contact region which decreases with bulk oil temperature and with increasing sliding speed, because of friction induced thermal effects. After breakdown of the EHD film, boundary lubrication may still prevent severe adhesive wear. The transition from the boundary lubricated regime towards the regime of severe adhesive wear is a function of load (normal force), speed and bulk oil temperature and possibly depends on the conjunction temperature. Irrespective of the initial lubrication condition, oxidation of the steel surfaces leads to the (re)establishment of low friction, mild wear conditions.  相似文献   

17.
Elastomeric compounds, due to their favourable properties like sufficient hardness, toughness and natural resistance to abrasion and corrosion, are commonly used as bearing material for propeller shaft system of Indian Coast Guard Ships. Recently unequal and non-uniform wear of these bearings has resulted in unscheduled lay off of the Coast Guard Ships. To solve this problem of bearing wear, a mixed lubrication analysis of sea-water lubricated journal bearing has been attempted in the present study. A computer code was written to estimate lubricating film thickness for a given set of load and speed condition, and to predict the lubrication regime for the specified surface roughness parameters. To validate the theoretical analysis performed in the present study, the results obtained from the computer simulation have been compared with the established studies on the water lubricated bearing.To understand the uneven wear of marine bearings, actual geometric clearances of new and worn out bearings recorded by the ship maintenance team, and the operational data (load, speed and operating hours), obtained from the log books of ICGS Sangram (AOPV) of Indian Coast Guard, are listed in the present paper. The dynamic viscosity of sea water, surface roughness of propeller shaft and bearings, and particulate contamination has been measured. Finally, the suggestions have been enlisted for proper operation of shaft-bearing system so as to maintain the wear within the permissible limits during ship's operational cycle.  相似文献   

18.
A wear test is described in which the edge of a hard wedge is loaded against the periphery of a rotating disc of softer specimen material. The applied normal load is kept approximately constant during a test. As the test progresses and the disc diameter is reduced by the wear taking place the wedge moves radially inward. By measuring this inward movement during a test it is shown how the wear can be continually monitored. Results are given and it is shown how these might be applied in practice, taking into account the influence of both surface roughness and lubrication.  相似文献   

19.
The influence of oil lubrication on the fretting wear behaviors of 304 stainless steel flat specimens under different fretting strokes and normal loads has been investigated. The results proved that fretting regimes and fretting wear behaviors of 304 stainless steels were closely related to the fretting conditions. In general, the increase in normal load could increase wear damage during sliding wear. However, according to the results, a significant reduction in wear volume and increase in friction coefficient was observed when the normal load was increased to critical values of 40 and 50 N at a fretting stroke of 50 μm due to the transformation of the fretting regime from a gross slip regime to partial slip regime. Only when the fretting stroke further increased to a higher value of 70 μm at 50 N, fretting could enter the gross slip regime. There was low wear volume and a high friction coefficient when fretting was in the partial slip regime, because oil penetration was poor. The wear mechanisms were fatigue damage and plastic deformation. There was high wear volume and low friction coefficient when fretting was in the gross slip regime, because the oil could penetrate into the contact surfaces. Unlike the wear mechanisms in the partial slip regime, fretting damage of 304 stainless steels was mainly caused by abrasive wear in the gross slip regime.  相似文献   

20.
为改善聚氨酯水润滑轴承材料的性能,在聚氨酯预聚体中分别添加不同含量的润滑脂、消泡剂和合成蜡,制备3种聚氨酯复合材料;利用CBZ-1型船舶轴系摩擦磨损试验机测试复合材料在不同工况下的摩擦学性能,利用激光干涉位移表面轮廓仪和超景深显微镜观察不同聚氨酯复合材料对摩副的表面形貌,探讨材料在水润滑条件下的磨损机制。结果表明:润滑脂和消泡剂的添加提高了聚氨酯材料的稳定性,再添加合成蜡有效地改善其在高压工况下的润滑状态;在高压工况下,与纯聚氨酯材料对摩的铸铜盘磨损后出现犁沟现象,表现出磨粒磨损的特征并伴随着黏着磨损,而与复合聚氨酯材料对摩的铸铜盘磨损后仅出现黏着磨损的特征。润滑脂、消泡剂和合成蜡能有效提高聚氨酯材料的耐磨性以及降低对摩副的磨损损耗,从而提高了聚氨酯材料作为水润滑轴承的安全性和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号