首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male, Long Evans rats (350-450 g) were anaesthetized and had pulsed Doppler probes and intravascular catheters implanted to allow monitoring of regional (renal, mesenteric and hindquarters) haemodynamics in the conscious state. Our main objectives were to:- assess the effects of administering human recombinant tumour necrosis factor (TNF)-alpha and human recombinant interleukin-1 (IL-1)beta, alone and together; determine the influence of pretreatment with a mixture of antibodies to TNF-alpha and IL-1beta on responses to co-administration of the cytokines; ascertain if pretreatment with a mixture of the antibodies to TNF-alpha and IL-1beta had any influence on the responses to lipopolysaccharide (LPS). TNF-alpha (10, 100 and 250 microg kg(-1), in separate groups, n=3, 9 and 8, respectively) caused tachycardia (maximum delta, +101+/-9 beats min(-1)) and modest hypotension (maximum delta, -10+/-2 mmHg), accompanied by variable changes in renal and mesenteric vascular conductance, but clear increases in hindquarters vascular conductance; only the latter were dose-related (maximum delta, +6+/-6, +27+/-9, and +61+/-12% at 10, 100 and 250 microg kg(-1), respectively). IL-1beta (1, 10, and 100 microg kg(-1) in separate groups, n = 8, 8 and 9, respectively) evoked changes similar to those of TNF-alpha (maximum delta heart rate, +69+/-15 beats min(-1); maximum delta mean blood pressure, -14+/-2 mmHg; maximum delta hindquarters vascular conductance, +49+/-17%), but with no clear dose-dependency. TNF-alpha (250 microg kg(-1)) and IL-1beta (10 microg kg(-1)) together caused tachycardia (maximum delta, +76+/-15 beats min(-1)) and hypotension (maximum A, -24+/-2 mmHg) accompanied by increases in renal, mesenteric and hindquarters vascular conductances (+52+/-6%, +23+/-8%, and +52+/-11%, respectively). Thereafter, blood pressure recovered, in association with marked reductions in mesenteric and hindquarters vascular conductances (maximum delta, -50+/-3% and -58+/-3%, respectively). Although bolus injection of LPS (3.5 mg kg(-1)) caused an initial hypotension (maximum delta, -27+/-11 mmHg) similar to that seen with co-administration of the cytokines, it did not cause mesenteric or hindquarters vasodilatation, and there was only a slow onset renal vasodilatation. The recovery in blood pressure following LPS was less than after the cytokines, and in the former condition there was no mesenteric vasoconstriction. By 24 h after co-administration of TNF-alpha and IL-1beta or after bolus injection of LPS, the secondary reduction in blood pressure was similar (-16+/-2 and -13+/-3 mmHg, respectively), but in the former group the tachycardia (+117+/-14 beats min(-1)) and increase in hindquarters vascular conductance (+99+/-21%) were greater than after bolus injection of LPS (+54+/-16 beats min ' and +439%, respectively). Pretreatment with antibodies to TNF-alpha and IL-1beta (300 mg kg(-1)) blocked the initial hypotensive and mesenteric and hindquarters vasodilator responses to co-administration of the cytokines subsequently. However, tachycardia and renal vasodilatation were still apparent. Premixing antibodies and cytokines before administration prevented most of the effects of the latter, but tachycardia was still present at 24 h. Pretreatment with antibodies to TNF-alpha and IL-1beta before infusion of LPS (150 microg kg(-1) h(-1) for 24 h) did not affect the initial fall in blood pressure, but suppressed the hindquarters vasodilatation and caused a slight improvement in the recovery of blood pressure. However, pretreatment with the antibodies had no effect on the subsequent cardiovascular sequelae of LPS infusion. the results indicate that although co-administration of TNF-alpha and IL-1beta can evoke cardiovascular responses which, in some respects, mimic those of LPS, and although antibodies to the cytokines can suppress most of the cardiovascular effects of the cytokines, the antibodies have little influence on the haemodynamic responses to LPS, possibly because, during infusion of LPS, the sites of production and local action of endogenous cytokines, are not accessible to exogenous antibodies.  相似文献   

2.
1. Regional haemodynamic responses to arginine vasopressin (AVP; 0.5, 1.0, 5.0 pmol i.v.) and angiotensin II (AII; 5.0, 10.0, 50.0 pmol i.v.) were measured in conscious Long Evans rats at various times (0, 2, 6 and 24 h) during infusion of lipopolysaccharide (LPS, 150 microg kg(-1) h(-1), i.v., n=9) or saline (n=9). Additional experiments were performed in vasopressin-deficient (Brattleboro) rats infused with LPS (n=7) or saline (n=8) to determine whether or not, in the absence of circulating vasopressin, responses to the exogenous peptides differed from those in Long Evans rats. 2. In the Long Evans rats, during the 24 h infusion of LPS, there was a changing haemodynamic profile with renal vasodilatation from 2 h onwards, additional mesenteric vasodilatation at 6 h, and a modest hypotension (reduction in mean arterial blood pressure (MAP) from 103+/-1 to 98+/-2 mmHg) associated with renal and hindquarters vasodilatation at 24 h. 3. In the Brattleboro rats, the changes in regional haemodynamics during LPS infusion were more profound than in the Long Evans rats. At 2 h and 6 h, there was a marked fall in MAP (from 103+/-3 mmHg; to 65+/-3 mmHg at 2 h, and to 82+/-4 mmHg at 6 h) associated with vasodilatation in all three vascular beds. After 24 h infusion of LPS, the hypotension was less although still significant (from 103+/-3 mmHg; to 93+/-4 mmHg, a change of 10+/-4 mmHg), and there was renal and hindquarters vasodilatation, but mesenteric vasoconstriction. 4. During infusion of LPS, at each time point studied, and in both strains of rat, pressor responses to AII and AVP were reduced, but the changes were less marked at 6 h than at 2 h or 24 h. The reduced pressor responses were not accompanied by generalized reductions in the regional vasoconstrictor responses. Thus, in the Long Evans rats, the renal vasoconstrictor responses to both peptides were enhanced (at 6 h and 24 h for AVP; at all times for AII), whereas the mesenteric vasoconstrictor response to AVP was unchanged at 2 h, enhanced at 6 h and reduced at 24 h. The mesenteric vasoconstrictor response to AII was reduced at 2 h, normal at 6 h and reduced at 24 h. The small hindquarters vasoconstrictor responses to both peptides were reduced at 2 h and 6 h, but normal at 24 h. 5. In the Brattleboro rats, the renal vasoconstrictor responses to both peptides were reduced at 2 h and enhanced at 6 h and 24 h, whereas the mesenteric vasoconstrictor response to AVP was normal at 2 h and 6 h, and reduced at 24 h. The response to AII was reduced at 2 h, normal at 6 h and reduced again at 24 h. There were no reproducible hindquarters vasoconstrictions to AVP in the Brattleboro rats. The small hindquarters vasoconstrictor responses to AII were unchanged at 2 h and enhanced at 6 h and 24 h. 6. In isolated perfused mesenteric vascular beds, removed after 24 h of LPS infusion in vivo, there was an increase in the potency of AVP in both strains (Long Evans, ED50 saline: 56.9+/-15.0 pmol, ED50 LPS: 20.4+/-4.8 pmol, Brattleboro, ED50 saline: 38.6+/-4.2, ED50 LPS: 19.6+/-2.9 pmol), but no change in the responses to AII. 7. These findings indicate that a reduced pressor response to a vasoconstrictor challenge during LPS infusion is not necessarily associated with a reduced regional vasoconstriction. The data obtained in the Brattleboro rats indicate a potentially important role for vasopressin in maintaining haemodynamic status during LPS infusion in Long Evans rats. However, it is unlikely that the responses to exogenous AVP (or AII) are influenced by changes in the background level of endogenous vasopressin, since the patterns of change were similar in Long Evans and Brattleboro rats. 8. The results obtained in isolated perfused mesenteric vascular beds differed from those in vivo, possibly due to the conditions pertaining with in vitro perfusion.  相似文献   

3.
1. The aim of the study was to measure the regional haemodynamic responses to vasodilators, and the effects of nitric oxide (NO) synthase inhibition, in conscious, hypertensive, transgenic ((mRen-2)27) rats (TG rats) and normotensive, Hannover Sprague-Dawley (SD) rats. 2. The hypotensive response to acetylcholine was greater in TG than in SD rats, but the renal vasodilator responses were not different. 3. The responses to bradykinin were similar in the two strains, except that hindquarters vasodilatation occurred only in SD rats. 4. Salbutamol caused smaller renal and hindquarters vasodilatation in TG rats than in SD rats, and there was mesenteric vasodilatation only in the latter strain. 5. The hypotensive response to sodium nitroprusside was smaller, but the accompanying mesenteric vasodilatation was greater, in SD than in TG rats. 6. The contribution of NO to the vasodilator responses was taken as the difference between the responses in the presence of the NO synthase inhibitor, NG-nitro-L-arginine methylester (L-NAME), compared to those in the presence of a co-infusion of angiotensin II and vasopressin (to match the haemodynamic effects of L-NAME). 7. In TG rats, L-NAME caused a greater absolute pressor effect, but a smaller mesenteric vasoconstriction, than in SD rats. 8. L-NAME affected the vasodilator responses to all the challenges similarly in the two strains. 9. Collectively, the results provide no direct evidence for impaired NO-mediated vasodilator mechanisms in TG rats. It is feasible that the reduced hindquarters response to bradykinin and the reduced renal and hindquarters responses to salbutamol, in TG rats are due to abnormal beta2-adrenoceptor-mediated processes.  相似文献   

4.
1. Heterozygous, male, hypertensive, transgenic ((mRen-2)27) rats (350-450 g) were instrumented for the measurement of regional or cardiac haemodynamics (n = 16, in both groups). Animals were given continuous i.v. infusions of the angiotensin-converting enzyme inhibitor, enalaprilat, or the dual metallopeptidase inhibitor, MDL 100,240 (both at 3 mg kg-1, 3 mg kg-1 h-1; n = 8 for regional and cardiac haemodynamics), for 32 h. Twenty four hours after the onset of infusion of enalaprilat or MDL 100,240, the bradykinin (B2)-receptor antagonist, Hoe 140 (1 mg kg-1, i.v.), was given and measurements were continued for a further 8 h, to assess any possible involvement of bradykinin. 2. Over the first 8 h of infusion, both enalaprilat and MDL 100,240 had significant antihypertensive effects, accompanied by similar regional vasodilatations. However, the blood pressure lowering effect of MDL 100,240 (-54 +/- 9 mmHg) was greater than that of enalaprilat (-38 +/- 4 mmHg), because the former caused a significantly greater reduction in cardiac index. 3. Between 8-24 h after the onset of infusion, there was a reduction in the effect of enalaprilat on blood pressure, because cardiac index rose, with no further increase in total peripheral conductance. In contrast, the antihypertensive effect of MDL 100,240 persisted, in spite of a recovery in cardiac index, because there was further vasodilatation, particularly in the mesenteric and hindquarters vascular beds. 4. There were no apparent haemodynamic changes associated with the injection of Hoe 140, and over the following 8 h, the difference between the haemodynamic effects of enalaprilat and MDL 100,240 persisted; there was little evidence of suppression of the effects of either drug. 5. These results are more consistent with the antihypertensive effects of enalaprilat or MDL 100,240 in transgenic ((mRen-2)27) rats being due to suppression of angiotensin II production, than due to inhibition of bradykinin degradation. The additional effects of MDL 100,240 may be accounted for by inhibition of the degradation of natriuretic peptides reducing cardiac output, initially, and decreasing vascular tone, subsequently. Alternatively, the additional increase in vascular conductance following treatment with MDL 100,240 may represent an autoregulatory response to the reduced pressure.  相似文献   

5.
In this study we examined the structural properties of cerebral and mesenteric resistance arteries isolated from normotensive, Sprague-Dawley (SD) rats (mean arterial pressure [MAP], 110 +/- 3 mm Hg) and hypertensive, transgenic (TG) rats (MAP, 167 +/- 4 mm Hg), which express the mouse Ren-2 renin gene. Vessels were set up in a pressure myograph, and ID and vascular wall thickness were determined at increasing intraluminal pressures. Arteries were subsequently pressurized to the MAP of the animal from which they were isolated and were fixed with glutaraldehyde before being embedded in araldite, sectioned, and examined histologically. The middle cerebral artery (MCA) isolated from SD rats and TG rats had similar media cross-sectional areas. There was no difference in MCA diameter at 10 mm Hg in vessels from TG rats compared with SD rats. However, at higher distending pressures, the diameter of the MCA from TG rats was significantly smaller than that of vessels from SD rats. This reduced ID at the higher pressures was a consequence of a decreased distensibility of the MCA from TG rats (as shown by a leftward shift of the stress-strain relationship in arteries from TG rats) and was not caused by an increase in wall thickness. First- and second-order mesenteric resistance arteries isolated from TG rats displayed an increased wall thickness and media content compared with vessels from SD rats. However, this alteration in mesenteric artery structure did not impinge on the ID of arteries from TG rats; there was no difference in the IDs of mesenteric resistance arteries between the two strains at any distending pressure. These observations show that there are distinct regional alterations in vascular structure in hypertensive TG rats expressing the mouse Ren-2 renin gene. Mesenteric resistance arteries isolated from TG rats display signs of vascular growth, although this structural alteration does not produce a reduction in the ID of these arteries per se. In contrast, cerebral arteries from TG rats do not show increased growth but have a reduced vascular distensibility, which results in a smaller ID compared with vessels from SD rats.  相似文献   

6.
1. In this study the mechanisms of the acute vasodilator action of bacterial lipopolysaccharide (LPS) were investigated in the rat Langendorff perfused heart. 2. Infusion of LPS (5 microg ml(-1)) caused a rapid and sustained fall in coronary perfusion pressure (PP) of 59 +/- 4 mmHg (n = 12) and a biphasic increase in NO levels determined in the coronary effluent by chemiluminescent detection. Both the fall in PP and the increase in NO release were completely abolished (n = 3) by pretreatment of hearts with the NO synthase inhibitor L-NAME (50 microM). 3. LPS-induced vasodilatation was markedly attenuated to 5 +/- 4 mmHg (n 3) by pretreatment of hearts with the B2 kinin receptor antagonist Hoe-140 (100 nM). 4. Vasodilator responses to LPS were also blocked by brief pretreatment with mepacrine (0.5 microM, n = 3) or nordihydroguaiaretic acid (0.1 microM, n = 4) and markedly attenuated by WEB 2086 (3 microM, n = 4). 5. Thirty minutes pretreatment of hearts with dexamethasone (1 nM), but not progesterone (1 microM), significantly modified responses to LPS. The action of dexamethasone was time-dependent, having no effect when applied either simultaneously with or pre-perfused for 5 min before the administration of LPS but inhibiting the response to LPS by 91 +/- 1% (n = 4) when pre-perfused for 15 min. The inhibition caused by dexamethasone was blocked by 15 min pretreatment with the glucocorticoid receptor antagonist RU-486 (100 nM) or by 2 min pre-perfusion of a 1:200 dilution of LCPS1, a selective antilipocortin 1 (LC1) neutralizing antibody. 6. Treatment with the protein synthesis inhibitor, cycloheximide (10 microM, for 15 min) selectively blunted LPS-induced vasodilatation, reducing the latter to 3 +/- 5 mmHg (n = 3), while having no effect on vasodilator responses to either bradykinin or sodium nitroprusside. 7. These results indicate that LPS-induced vasodilatation in the rat heart is dependent on activation of kinin B2 receptors and synthesis of NO. In addition, phospholipase A2 (PLA2) is activated by LPS resulting in the release of platelet-activating factor (PAF) and lipoxygenase but not cyclo-oxygenase products. These effects are dependent on de novo synthesis of an intermediate protein which remains to be identified.  相似文献   

7.
BACKGROUND: As endothelin-1 exerts positive inotropic effects, the present study evaluated whether the hypotensive effects of the endothelin-1 receptor antagonist bosentan were partially related to a decrease in myocardial performance. METHODS: In group I, eight anaesthetized open-chest dogs with perinephritic hypertension received four cumulative doses of bosentan (B1-B4). In group II, eight animals received the same doses of bosentan after autonomic blockade. Indices of heart function were derived from the pressure-length loops obtained during vena cava occlusion. RESULTS: In group I, bosentan decreased left ventricular systolic pressure (LVSP) and mean aortic pressure (MAP) dose dependently, reaching 21% and 23% respectively at B4 (LVSP from 190 +/- 8 to 150 +/- 5 mmHg, P < 0.001; MAP from 167 +/- 7 to 128 +/- 5 mmHg, P < 0.001). These effects were only related to peripheral vasodilatation, without depression of myocardial contractility, as systemic vascular resistance dropped (from 670 +/- 83 to 446 +/- 53 mmHg mL-1 min-1 x 10(4); P < 0.05), and the end-systolic pressure-length relationship (ESPLR) remained unchanged (4.0 +/- 0.4 vs. 4.3 +/- 0.7 mmHg mm-1 kg-1). Concomitantly with pressure decline, heart rate tended to increase in this group (from 150 +/- 4 to 156 +/- 6 beats min-1). When autonomic system was blocked (group II), administration of bosentan induced similar hypotensive effects as in group I (26% and 28% reduction in LVSP and MAP respectively, P < 0.001) whereas ESPLR did not change (3.0 +/- 0.9 vs. 3.1 +/- 0.5mmHg-1 mm kg-1 ). Under these sympathetically blocked conditions, heart rate significantly fell after bosentan infusion (from 120 +/- 4 to 110 +/- 6 beats min-1, P < 0.001). CONCLUSIONS: Without influencing heart function, bosentan is an efficient and safe therapy that opens up new therapeutic perspectives in human essential hypertension.  相似文献   

8.
An analogue of the 10 C-terminal amino acids of neuropeptide Y (NPY) containing three D-isomeric substitutions (27-36-D) has been synthesized and its cardiovascular activity studied in Sprague-Dawley (SD) and spontaneously hypertensive (SHR) rats. Intravenous administration of 1000 nmol/kg 27-36-D decreases MAP in SHR (-59.9 +/- 5.0 mmHg) and SD rats (-44.4 +/- 4.7 mmHg). The hypotension produced by 1000 nmol/kg 27-36-D diminished by 71.2% following pretreatment with the histamine receptor antagonist diphenhydramine, although histamine depletion with compound 48/80 does not significantly alter this hypotension. These data suggest that NPY (27-36)-D produces a profound and sustained hypotension in two strains of rat which is partially attributable to activity at histamine receptors.  相似文献   

9.
PURPOSE: To assess the accuracy of intraarterial measurement of transstenotic pressure gradients for the detection of hemodynamically suboptimal iliac angioplasty. METHODS: In 14 patients, referred for diagnostic angiography, mean pressure gradients in the aorta and iliac artery were obtained twice, using a double-sensor pressure catheter. Additional iliac measurements were performed during pharmacologically induced flow augmentation. Repeatability was assessed by calculation of the mean difference plus standard deviation (MD +/- SD) and repeatability coefficient (2 x SD). These results were extrapolated to 137 iliac angioplasty procedures with secondary stenting where there was a residual pressure gradient > 10 mmHg. RESULTS: MD +/- SD for repeated measurements at rest and during flow augmentation were 0 +/- 2 mmHg and 1 +/- 3 mmHg, respectively. Repeatability coefficients were 3 and 6 mmHg. Mean pressure gradients after hemodynamically insufficient angioplasty were 8 +/- 7 mmHg at rest and 17 +/- 5 mmHg following vasodilatation. Inaccurate pressure recordings may have led to inappropriate stent placement in less than 2.5%, and inappropriate denial of stent placement in less than 5% of the lesions. CONCLUSION: Variability of intraarterial pressure measurements has little consequence in the detection of hemodynamically significant stenosis after angioplasty.  相似文献   

10.
BACKGROUND: Because patients may be taking clonidine chronically or may be receiving it as a premedication before surgery, the authors investigated its effect on cerebral hemodynamics. METHODS: In nine volunteers, middle cerebral artery mean blood flow velocity (Vm) was measured using transcranial Doppler ultrasonography (TCD). CO2 vasoreactivity was measured before clonidine administration (preclonidine), 90 min after clonidine, 5 microg/kg orally, then following restoration of mean arterial pressure (MAP) to the preclonidine level. In addition, Vm was measured after a phenylephrine-induced 30-mmHg increase in MAP. RESULTS: After clonidine administration, Vm decreased from 62 +/- 9 to 48 +/- 8 cm/s (P < 0.01), and MAP decreased from 86 +/- 10 to 63 +/- 5 mmHg (P < 0.01; mean +/- SD). Clonidine decreased the CO2 vasoreactivity slope from 2.2 +/- 0.4 to 1.2 +/- 0.5 cm x s(-1) x mmHg(-1) (P < 0.05); restoring MAP to the preclonidine level increased the slope to 1.60 +/- 0.5 cm x s(-1) x mmHg(-1), still less than the preclonidine slope (P < 0.05). CO2 vasoreactivity expressed as a percentage change in Vm, decreased after clonidine, 3.5 +/- 0.8 versus 2.4 +/- 0.8 %/mmHg (P < 0.05); this difference disappeared after restoration of MAP, 3.1 +/- 1.2 %/mmHg. With a 30-mmHg increase in MAP, Vm increased by 13% before and after clonidine (P < 0.05). CONCLUSIONS: Clonidine, 5 microg/kg orally, decreases Vm and slightly attenuates cerebral CO2 vasoreactivity, therefore decreased cerebral blood flow and mildly attenuated CO2 vasoreactivity should be anticipated.  相似文献   

11.
1. The haemodynamic mechanisms by which infusion of angiotensin II (AngII), either into the lateral cerebral ventricles (i.c.v.) or intravenously (i.v.), increased arterial pressure were studied in conscious sheep. 2. Sheep were previously fitted with flow probes for measurement of cardiac output and coronary, mesenteric, renal and iliac blood flows. 3. Intracerebroventricular AngII (10 nmol/h for 1 h) increased arterial pressure by 11 +/- 4 mmHg (P < 0.001) due to vasoconstriction, predominantly in the mesentric vasculature. These effects developed over 30 min and took 2 h to return to control. Following the infusion renal conductance increased continuously for 3 h, resulting in a parallel increase in renal blood flow (to 75 +/- 18 mL/min above control, P < 0.001). 4. Intracerebroventricular AngII increased plasma vasopressin from 0.8 +/- 0.3 to 7.2 +/- 1.8 pg/mL (P, 0.01), and reduced plasma renin concentration from 0.9 +/- 0.3 to < 0.4 nmol/L/h. 5. The pressor effect of i.v. AngII (5, 10, 25, 50 nmol/h) also depended on peripheral vasoconstriction, but the pattern of responses was different. The greatest degree of vasoconstriction occurred in the renal, followed by the mesentric and iliac vascular beds; these effects were rapid in onset and offset. 6. In conclusion, the pressor responses to both i.c.v. and i.v. angiotensin depended on peripheral vasoconstriction, but there were contrasting regional haemodynamic changes. ICV AngII caused a prolonged pressor response, mainly due to mesentric vasoconstriction possibly partly due to vasopressin release, and following the infusion there was a pronounced, long-lasting renal vasodilatation. In contrast, i.v. AngII caused vasoconstriction preferentially in the renal vascular bed and its effects were short lasting.  相似文献   

12.
OBJECTIVE: To test the hypothesis that reductions in mean arterial pressure (MAP) induced by food-intake restriction in aortic coarctation hypertension are the result of a reduction of the sympathetic support of the MAP. We also wanted to determine whether the baroreflex control of the heart rate, and alpha- and beta-adrenergic responsivenesses were influenced by chronic food-intake restriction. METHODS: Four days after aortic coarctation, female Sprague-Dawley rats were assigned to a group that had access ad libitum to food (CON; n = 19) or to a food-intake-restricted group (FRG; n = 17) that was allowed 60% of the CON group's food intake per rat. After 3 weeks, carotid and jugular catheters were implanted for measurement of the MAP and infusion of drugs into conscious rats. The sympathetic contribution to the blood pressure was assessed by measuring the depressor response to ganglionic blockade by hexamethonium plus atropine (30.0 and 0.1 mg/kg intravenously). The baroreflex control of the heart rate was assessed by administering alternating bolus doses of phenylephrine and nitroprusside. The alpha-adrenergic sensitivity was assessed by measuring the response of the MAP to phenylephrine in areflexive rats (after ganglionic blockade), and the beta-adrenergic sensitivity was assessed by measuring the responses of the MAP and heart rate to isoproterenol administration both in reflexive and in areflexive rats. RESULTS: Four days after catheterization, both the MAP (CON 150 +/- 5 mmHg, FRG 116 +/- 4 mmHg) and the heart rate (CON 414 +/- 8 beats/min, FRG 365 +/- 11 beats/min) were significantly lower in rats of the FRG. That the sympathetic support of the MAP had diminished in FRG rats was evidenced by an attenuated depressor response to ganglionic blockade (40 +/- 3 versus 65 +/- 3 mmHg). FRG rats exhibited significantly greater reflex bradycardia in response to phenylephrine (slope -1.44+/- 0.07 versus -0.54 +/- 0.05 beats/min per mmHg), whereas their reflex tachycardia was not altered (slope -1.58 +/- 0.08 versus -1.53 +/- 0.13 beats/min per mmHg). FRG rats also displayed blunted responses of the heart rate and MAP to isoproterenol administration. CONCLUSION: Food-intake restriction attenuates the rise in MAP which occurs after aortic coarctation significantly. The antihypertensive effect of food-intake restriction may be mediated via a reduction in sympathetic tone.  相似文献   

13.
INTRODUCTION: To test the hypothesis that hypovolemia can acutely increase the sensitivity of chronotropic baroreflex response, eight men (21-45 yr old) underwent measurements of heart rate response to aortic baroreceptor stimulation under normovolemic and hypovolemic conditions. METHODS: Hypovolemia was acutely induced by a bolus injection of 30 mg of furosemide. The sensitivity of the aortic-cardiac baroreflex was determined with a approximately 15 mmHg elevation in mean arterial pressure (MAP) induced by steady-state infusion of 30 to 97 micrograms.min-1 phenylephrine (PE) combined with approximately 13 mmHg lower body negative pressure (LBNP) to counteract central venous pressure elevations, and 17-19 mmHg neck pressure (NP) to offset increases in carotid sinus transmural pressure. The aortic-cardiac baroreflex gain was assessed by determining the ratio of the change in heart rate to the change in MAP (delta HR/delta MAP) between baseline and aortic baroreceptor isolated conditions (i.e., PE + LBNP + NP stage). RESULTS: When compared to normovolemia (3182 +/- 163 ml), furosemide-induced hypovolemia (2812 +/- 101 ml) resulted in an average 12% reduction in plasma volume (p = 0.05). Hypovolemia increased the average gain of the aortic-cardiac baroreflex by 68% (0.71 +/- 0.26 to 1.19 +/- 0.37 beats.min-1.mmHg-1; p = 0.0349) while it had no effect on the calculated response of the carotid-cardiac baroreflex. CONCLUSIONS: These results indicate that greater aortic baroreflex sensitivity observed in individuals who are physically untrained or have been exposed to microgravity may be explained by smaller vascular volume rather than differences in autonomic function associated with adaptations to lower aerobic capacity.  相似文献   

14.
The time course of changes in baroreceptor reflex sensitivity in Goldblatt two-kidney one clip (2K1C) hypertension was studied 3, 7 and 30 days after renal artery clipping by means of a sigmoidal curve-fitting analysis. Experiments were performed in 54 adult male Wistar rats (N = 9 per group) weighing 200-300 g. The reflex heart rate responses were elicited by alternate intravenous bolus injections of phenylephrine (delta +5 to +50 mmHg) and sodium nitroprusside (delta -5 to -50 mmHg). A clear upper and lower plateau (reflex tachycardia and bradycardia, respectively) was noted in both sham and hypertensive groups. Although the resting mean arterial pressure was significantly increased in all hypertensive groups (131 +/- 3, 149 +/- 7 and 168 +/- 11 mmHg, respectively, 3, 7 and 30 days after clipping), when compared to the sham group (108 +/- 2 mmHg), significant changes in baroreceptor reflex function were observed only in 7- and 30-day groups. Baroreflex sensitivity was markedly reduced in these hypertensive rats (2.3 +/- 0.3 and 1.9 +/- 0.3 bpm/mmHg, respectively) compared to the sham group (4.2 +/- 0.3 bpm/mmHg). In addition, a reduced baroreflex heart rate range was observed in these groups (117 +/- 12 and 107 +/- 10 bpm, respectively) compared to the sham group (165 +/- 11 bpm). These data indicate an impairment of baroreflex function in conscious 2K1C hypertensive rats which seems to be secondary to arterial hypertension.  相似文献   

15.
OBJECTIVE: Determine the influence of urapidil on mean lumbar cerebrospinal fluid pressure (CSFP), mean arterial pressure (MAP), mean central venous pressure (CVP) and heart rate (HR) in awake humans without any evidence of cerebral or cardiovascular disease. DESIGN: Open, single-dose volunteer study. INTERVENTIONS: CSFP was measured via a spinal needle after i.v. injection of a single dose of 0.2 mg kg-1 urapidil in six volunteers (2 female, 4 male). MEASUREMENTS AND RESULTS: After administration of urapidil, CSFP increased from 7 +/- 1 mmHg to 10 +/- 1 mmHg (p < 0.05), MAP decreased from 88 +/- 7 mmHg to 74 +/- 5 mmHg (p < 0.05), CPP decreased from 81 +/- 7 mmHg to 64 +/- 5 mmHg (p < 0.05) and CVP decreased from 0 +/- 1 mmHg to -3 +/- 1 mmHg (p < 0.05). CONCLUSION: Our data suggest that in humans with presumed normal intracranial compliance the administration of urapidil causes a small but statistically significant increase in CSFP due to a parallel decrease in MAP.  相似文献   

16.
1. The vascular effect of insulin in the mesenteric resistance blood vessel and the role of calcitonin generelated peptide (CGRP)-receptor in insulin-induced vascular responsiveness were investigated in rats. 2. The mesenteric vascular beds isolated from Wistar rats were perfused with Krebs solution, and perfusion pressure was measured with a pressure transducer. In preparations contracted by perfusion with Krebs solution containing methoxamine in the presence of guanethidine, the perfusion of insulin (from 0.1 to 3000 nM) caused a concentration-dependent decrease in perfusion pressure due to vasodilatation. The pD2 value and maximum relaxation (%) were 6.94+/-0.22 and 43.9+/-5.2, respectively. 3. This vasodilator response to insulin was unaffected by 100 nM propranolol (beta-adrenoceptor antagonist) plus 100 nM atropine (muscarinic cholinoceptor antagonist), 100 microM L-NG-nitroarginine (nitric oxide synthase inhibitor), 1 microM ouabain (Na+-K+ ATPase inhibitor), or 1 microM glibenclamide (ATP sensitive K+-channel inhibitor). 4. In preparations without endothelium, perfusion of insulin produced a marked vasodilatation. The pD2 value and maximum relaxation (%) were 7.62+/-0.21 and 81.0+/-4.6, respectively, significantly greater than in preparations with intact endothelium. 5. The vasodilator responses to insulin in the preparations without endothelium were significantly inhibited by CGRP[8 37], a CGRP receptor antagonist, whereas pretreatment with capsaisin, a toxin for CGRP-containing nerves, did not affect insulin-induced vasodilatation. 6. These results suggest that insulin induces non-adrenergic, non-cholinergic and endothelium-independent vasodilatation, which is partially mediated by CGRP receptors.  相似文献   

17.
The present study was designed to investigate the role of cardiopulmonary reflex, more specifically the Bezold-Jarisch reflex, in experimental hypertension induced by chronic administration of Nw-nitro-L-arginine methyl ester (L-NAME) (0.5 mg/ml) added to the drinking water for 6 days. The study was performed in male Wistar rats (200-350 g), 9 animals per group. L-NAME ingestion caused a significant increase in resting mean arterial pressure (MAP: 182 +/- 4 mmHg) and heart rate (HR: 447 +/- 20 bpm) when compared to untreated rats (MAP: 112 +/- 3 mmHg and HR: 355 +/- 10 bpm). Cardiopulmonary receptors were chemically stimulated with bolus injections of 5-hydroxytryptamine (5-HT, 4-10 micrograms/kg, iv) followed by measuring the falls in diastolic arterial pressure (DAP) and HR in conscious and freely moving animals. As expected, the responses to intravenous injections of 5-HT consisted of a dose-dependent reduction in HR (from 26 +/- 14 to 175 +/- 25 bpm) and DAP (from 7 +/- 4 to 39 +/- 3 mmHg) in the control rats. Both bradycardia and diastolic hypotension were significantly accentuated in the L-NAME animals (approximately 30%). These data suggest that, in contrast to other models of hypertension, in the present one caused by inhibition of nitric oxide synthesis, the Bezold-Jarisch reflex is exaggerated. This neural dysfunction could be related to changes in the cardiac vagal efferent or effector.  相似文献   

18.
The effect of type 1 diabetes mellitus on hypoxia-induced coronary vasodilation was studied in isolated perfused rabbit hearts. Four groups of hearts were compared: control hearts from normal rabbits perfused with physiological buffer (5 mM glucose and 2 mM pyruvate added), hearts from alloxan-induced diabetic rabbits (same perfusion as control), hyperglycemic hearts from normal rabbits perfused with 22 mM glucose and 2 mM pyruvate, and hyperosmotic hearts from normal rabbits perfused with 5 mM glucose, 2 mM pyruvate, and 8.5 mM choline chloride. Hypoxia was produced by perfusion with a mixture of N2- and O2- saturated solutions. Endothelium-dependent and -independent dilators were also tested. Papaverine-induced coronary vasodilatation was unaltered, whereas that of serotonin and adenosine was significantly reduced in hyperglycemic and hyperosmotic hearts but not in diabetic hearts perfused with normoglycemic buffer. Hypoxia (PO2 from 515 +/- 86 to 131 +/- 24 mmHg; 1 mmHg = 133.3 Pa) caused a significant coronary vasodilatation in normal hearts (-66 +/- 3%). This vasodilatation was reduced slightly in diabetic (-45 +/- 7%, p < 0.05) and severely in hyperglycemic (-21 +/- 5%, p < 0.05) and hyperosmotic (-24 +/- 5%, p < 0.05) hearts. The adenosine-receptor antagonist 8-phenyltheophylline (10 microM) reduced hypoxia-induced vasodilatation in normal and diabetic hearts. However, inhibition of prostaglandin synthesis with diclofenac (1 microM), which reduces hypoxia-induced vasodilatation in normal hearts, had no effect in diabetic hearts. In conclusion, alloxan-induced type 1 diabetes mellitus in rabbits is accompanied by a reduced coronary vasodilator response to hypoxia. The contribution of adenosine in this response is unaffected. However, the abated contribution of cyclooxygenase products may account for the reduced vasodilatation during hypoxia in this particular model.  相似文献   

19.
OBJECTIVE: To measure the effect of hypertension on neointima formation after balloon injury of rat aorta and its association with the local angiotensin converting enzyme (ACE) concentration. Balloon angioplasty of the thoracic aorta using a 2 French Fogarty catheter was performed in spontaneously hypertensive rats (SHR) and normotensive Sprague-Dawley (SD) rats. RESULTS: The injured aortic wall of SHR had already significantly higher ACE concentrations than did the uninjured aortic wall of normotensive SD rats (media: 729 +/- 37 dpm/mm2 in SHR versus 496 +/- 38 dpm/mm2 in SD rats, P < 0.01; intima: 83 +/- 5 dpm/mm2 versus 68 +/- 6 dpm/mm2 in SD rats, P < 0.01). Fourteen days after injury of the aorta the hypertensive rats had significantly higher neointima: media ratios than did the normotensive rats (0.83 +/- 0.09 versus 068 +/- 0.01, P < 0.01). This was associated with a significant increase in vascular media and neointima ACE concentrations in SHR (media 965 +/- 25 dpm/mm2, neointima 614 +/- 48 dpm/mm2) compared with those in normotensive SD rats after balloon angioplasty (media 669 +/- 23 dpm/mm2, neointima 287 +/- 33 dpm/mm2, P < 0.01). ACE inhibitor treatment with 10 mg/kg body weight lisinopril daily for 14 days by gavage reduced neointima proliferation in hypertensive and normotensive rats (neointima: media ratio: 0.35 +/- 0.02 for SHR, P < 0.01, versus untreated SHR with balloon injury; 0.28 +/- 0.01 for SD, P < 0.01, versus untreated SD rats with balloon injury). This was associated with significant vascular media ACE inhibition (SHR 149 +/- 9 dpm/mm2; SD rats 118 +/- 7 dpm/mm2; P < 0.01 versus untreated controls with balloon injury) and neointima ACE inhibition (SHR 73 +/- 4 dpm/mm2, SD rats 63 +/- 7 dpm/mm2, P < 0.01, versus untreated controls with balloon injury), but also lowered the blood pressure in SHR significantly (to 148 +/- 5 mmHg, P < 0.01, versus untreated SHR with balloon injury). When this drop in blood pressure was prevented by feeding the rats a high-salt diet (SHR with ACE inhibitor plus high salt-diet group blood pressure 193 +/- 3 mmHg, P = 0.57, versus untreated SHR) hypertension per se without the local ACE increase (ACE concentration in SHR with ACE inhibitor high-salt diet rats' media 167 +/- 10 dpm/mm2 and neointima 81 +/- 9 dpm/mm2) had only a mild effect on neointima formation after balloon angioplasty (neointima: media ratio 0.4 +/- 0.01 for SHR with ACE inhibitor plus high-salt diet versus 0.35 +/- 0.02 for SHR with ACE inhibitor plus normal-salt diet P < 0.05). Treatment with 10 mg/kg body weight angiotensin II subtype 1 receptor antagonist losartan potassium daily for 14 days by gavage was associated with a reduction in neointima formation similar to that observed with the ACE inhibitor both for SHR and for SD rats (neointima: media ratio 0.32 +/- 0.04 for SHR with losartan, 0.27 +/- 0.03 for SD rats with losartan; P < 0.01, versus untreated controls with balloon injury) suggesting that ACE inhibitor prevented neointima formation, at least in part by, reducing the local production of angiotensin II. CONCLUSION: Neointima formation after balloon angioplasty in SHR is increased compared with that in normotensive SD rats. This is due mainly to there being a higher degree of activation of the renin-angiotensin system in the aorta of the SHR before and after balloon injury compared with that in normotensive SD rats measured in terms of the increased vascular ACE concentrations. Blood pressure alone had only a moderate effect on neointima formation.  相似文献   

20.
Vascular remodeling and changes in vascular responsiveness occur in the rat cerebrum with old age. This includes reductions in cerebral arteriolar numerical density, cross-sectional area, distensibility, the relative proportion of distensible elements in the cerebral arteriolar wall, and reduced endothelium-dependent relaxation. The purpose of this study was to test the hypothesis that old age results in an increase in vascular resistance and, correspondingly, a decrease in blood flow to ocular, regional cerebral, and spinal tissue in the rat. Blood flow was measured in the eye, olfactory bulb, left and right cerebrum, pituitary gland, midbrain, pons, cerebellum, medulla, and spinal cord of juvenile (2-mo-old, n = 6), adult (6-mo-old, n = 7), and aged (24-mo-old, n = 7) male Fischer-344 rats. Arterial pressure and blood flow were used to calculate vascular resistance. Vascular resistance in the eye of aged rats (6.03 +/- 1.08 mmHg . ml-1 . min . 100 g) was higher than that in juvenile (3.83 +/- 0.38 mmHg . ml-1 . min . 100 g) and adult rats (3.12 +/- 0.24 mmHg . ml-1 . min . 100 g). Similarly, resistance in the pons of older rats (2.24 +/- 0.55 mmHg . ml-1 . min . 100 g) was greater than in juvenile (0.66 +/- 0.06 mmHg .ml-1 . min . 100 g) and adult rats (0.80 +/- 0.11 mmHg . ml-1 . min . 100 g). In contrast, vascular resistance in the pituitary gland was lower in the aged rats (juvenile, 3.09 +/- 0.22; adult, 2.79 +/- 0.42; aged, 1.73 +/- 0.32 mmHg . ml-1 . min . 100 g, respectively). Vascular resistance was not different in other cerebral tissues or in the spinal cord in the aged rats. These data suggest that regional cerebral and spinal blood flow and vascular resistance remain largely unchanged in conscious aged rats at rest but that elevations in ocular vascular resistance and, correspondingly, decreases in ocular perfusion with advanced age could have serious adverse effects on visual function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号